ZnO bicrystalline nanosheets have been synthesized by using Ax=AU1-x alloy catalyst via the vapor transport and condensation method at 650 ℃. High resolution transmission electron microscopy characterization reveals ...ZnO bicrystalline nanosheets have been synthesized by using Ax=AU1-x alloy catalyst via the vapor transport and condensation method at 650 ℃. High resolution transmission electron microscopy characterization reveals a twin boundary with {01-13} plane existing in the bicrystalline. A series of control experiments show that both AgxAu1-x alloy catalyst and high supersaturation of Zn vapor are prerequisites for the formation of ZnO bicrystalline nanosheet. Moreover, it is found that the density of ZnO bicrytalline nanosheets can be tuned through varying the ratio of Ag to Au in the alloy catalyst. The result demonstrates that new complicated nanostructures can be produced controllably with appropriate alloy catalyst.展开更多
Noble metal-reducible oxide interfaces have been regarded as one of the most active sites for water-gas shift reaction.However,the molecular reaction mechanism of water-gas shift reaction at these interfaces still rem...Noble metal-reducible oxide interfaces have been regarded as one of the most active sites for water-gas shift reaction.However,the molecular reaction mechanism of water-gas shift reaction at these interfaces still remains unclear.Herein,water-gas shift reaction at Pt-NiO interfaces has been in-situ explored using surface-enhanced Raman spectroscopy by construction of Au@Pt@NiO nanostructures.Direct Raman spectroscopic evidence demonstrates that water-gas shift reaction at Pt-NiO interfaces proceeds via an associative mechanism with the carbonate species as a key intermediate.The carbonate species is generated through the reaction of adsorbed CO with gaseous water,and its decomposition is a slow step in water-gas shift reaction.Moreover,the Pt-NiO interfaces would promote the formation of this carbonate intermediate,thus leading to a higher activity compared with pure Pt.This spectral information deepens the fundamental understanding of the reaction mechanism of water-gas shift reaction,which would promote the design of more efficient catalysts.展开更多
The nanoparticles MgSb206 with trirutile-type structure were prepared by colloidal method using ethylanediamine (0.5 and 0.75 mL), following a calcination at 800 ℃. After, those powders were analyzed by x-ray obtai...The nanoparticles MgSb206 with trirutile-type structure were prepared by colloidal method using ethylanediamine (0.5 and 0.75 mL), following a calcination at 800 ℃. After, those powders were analyzed by x-ray obtaining a tetragonal structure with cell parameters, a = 4.64 A and c = 9.25 A and special group P42/mnm. Using a scanning electron microscopy were analyzed the powders calcined at 800 ℃, showing the formation of micro-plates, micro-rods, nanoparticles and morphology as rice grains. Employing a transmission electron microscopy, were found nanostructures hexagonal shaped with sizes of- 33.6 nm (0.5 mL) and 28.6 nm (0.75 mL).展开更多
Nanomagnetic CoPt truncated octahedral nanoparticles (TONPs) were successfully synthesised through a facile one-pot strategy. These single crystal CoPt TONPs with an average size of about 8 nm exhibit excellent elec...Nanomagnetic CoPt truncated octahedral nanoparticles (TONPs) were successfully synthesised through a facile one-pot strategy. These single crystal CoPt TONPs with an average size of about 8 nm exhibit excellent electrocatalytic performance of both activity and stability for methanol oxidation reaction (MOR). The mass and specific activities of CoPt TONPs is 8 and 6 times higher than that of standard commercial Pt/C, respectively. After accelerated durability test (ADT), the loss of electrochemical surface area (ECSA) for CoPt TONPs is only 18.5%, which is significantly less than that of commercial Pt/C (68.2%), indicating that CoPt TONPs possess much better stability than commercial Pt/C in the prolonged operation. The Curie temperature of CoPt TONPs down to 8 nm is as high as 350 K with weak ferromagntism at room temperature (RT), which is greatly valuable for recycling in the eletrocatalytic applications.展开更多
A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimens...A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723-773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.展开更多
Wurzite ZnS:Mn nanorods are synthesized via a solvothermal method by using ethylenediamine and water as mixed solvent.The diameters of the nanorods increase and the lengths decrease with the Mn concentration.High reso...Wurzite ZnS:Mn nanorods are synthesized via a solvothermal method by using ethylenediamine and water as mixed solvent.The diameters of the nanorods increase and the lengths decrease with the Mn concentration.High resolution transmission electron microscopic images illustrate that a few cubic ZnS:Mn nanoparticles arise along with hexagonal nanorods on high Mn concentration.The samples set off yellow-orange emission at 590 nm,characteristic of 4 T→ 6 A 1 transition of Mn 2+ at T d symmetry in ZnS.Electron spin resonance spectrum of the nanorods shows that high Mn concentrations produce a broad envelope,whereas six-line hyperfine appears for lower Mn concentrations.These results together with the magnetization curves indicate that all the ZnS:Mn samples are paramagnetic even down to 4 K,which suggests that the ZnS:Mn is not suitable for dilute magnetic semiconductor.展开更多
Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (〈 100 nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis...Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (〈 100 nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis, trace element cycling, contaminant transport, and chemical reaction. The nano-sized fraction of an Anthrosol was obtained to determine the occurrence, chemical composition, structure, and mineral phases of nanoparticles using high-resolution transmission electron microscopy (HRTEM) equipped with an energy-dispersive X-ray spectroscopy. Selected area electron diffraction or the fast Fourier transform of high-resolution images was used in structural characterization of the nanoparticles with HRTEM. Two nanoscale mineral types, i.e., mineral nanoparticles and nanomi- nerals, were observed in the Anthrosol. Mineral nanoparticles in soil included well crystalline aluminumsilicate nanosheets, nanorods, and nanoparticles. Nanosheets with a length of 120-150 nm and a width of about 10-20 nm were identified as chlorite/vermiculite series. The presence of clear lattice fringe spacing in HRTEM image of nanoparticles indicated that mineral nanoparticles had a relatively good crystallinity. The nanomineral ferrihydrite also existed in the Anthrosol. The HRTEM images and the particle size distribution histogram suggested that these ferrihydrite nanoparticles were quite homogeneous, and had a narrow size distribution range (1-7 nm) with a mean diameter of 3.6 4- 1.6 nm. Our HRTEM observation indicated that mineral nanoparticles and nanominerals were common and widely distributed in Anthrosols. HRTEM and selected area diffraction or lattice fringe spacing characterization provided further proofs to the structure of nanoparticles formed in soil.展开更多
基金The National Science Foundation(NSF)Centers of Research Excellence in Science and Technology(NSF CREST,HRD-0734850)MRI acquisition(CBET-0821370)at the Texas A&M University-Kingsville
基金ACKNOWLEDGMENTS This work was supported by the Ministry of Science and Technology of China of China (No.2011CB921403), the National Natural Science Foundation of China (No. 11374274 and No. 11074231), and Chinese Academy of Sciences (No.XDB01020000).
文摘ZnO bicrystalline nanosheets have been synthesized by using Ax=AU1-x alloy catalyst via the vapor transport and condensation method at 650 ℃. High resolution transmission electron microscopy characterization reveals a twin boundary with {01-13} plane existing in the bicrystalline. A series of control experiments show that both AgxAu1-x alloy catalyst and high supersaturation of Zn vapor are prerequisites for the formation of ZnO bicrystalline nanosheet. Moreover, it is found that the density of ZnO bicrytalline nanosheets can be tuned through varying the ratio of Ag to Au in the alloy catalyst. The result demonstrates that new complicated nanostructures can be produced controllably with appropriate alloy catalyst.
文摘Noble metal-reducible oxide interfaces have been regarded as one of the most active sites for water-gas shift reaction.However,the molecular reaction mechanism of water-gas shift reaction at these interfaces still remains unclear.Herein,water-gas shift reaction at Pt-NiO interfaces has been in-situ explored using surface-enhanced Raman spectroscopy by construction of Au@Pt@NiO nanostructures.Direct Raman spectroscopic evidence demonstrates that water-gas shift reaction at Pt-NiO interfaces proceeds via an associative mechanism with the carbonate species as a key intermediate.The carbonate species is generated through the reaction of adsorbed CO with gaseous water,and its decomposition is a slow step in water-gas shift reaction.Moreover,the Pt-NiO interfaces would promote the formation of this carbonate intermediate,thus leading to a higher activity compared with pure Pt.This spectral information deepens the fundamental understanding of the reaction mechanism of water-gas shift reaction,which would promote the design of more efficient catalysts.
文摘The nanoparticles MgSb206 with trirutile-type structure were prepared by colloidal method using ethylanediamine (0.5 and 0.75 mL), following a calcination at 800 ℃. After, those powders were analyzed by x-ray obtaining a tetragonal structure with cell parameters, a = 4.64 A and c = 9.25 A and special group P42/mnm. Using a scanning electron microscopy were analyzed the powders calcined at 800 ℃, showing the formation of micro-plates, micro-rods, nanoparticles and morphology as rice grains. Employing a transmission electron microscopy, were found nanostructures hexagonal shaped with sizes of- 33.6 nm (0.5 mL) and 28.6 nm (0.75 mL).
基金supported by the National Basic Research Program of China(2015CB921401)the National Instrument Program of China(2012YQ120048)+2 种基金the National Natural Science Foundation of China(51625101,51431009,51471183,51331002,51371015,11274371 and 11674023)the Instrument Development Program of Chinese Academy of Sciences(YZ201345)the Fundamental Research Funds for the Central Universities(FRF-BR-15-009B)
文摘Nanomagnetic CoPt truncated octahedral nanoparticles (TONPs) were successfully synthesised through a facile one-pot strategy. These single crystal CoPt TONPs with an average size of about 8 nm exhibit excellent electrocatalytic performance of both activity and stability for methanol oxidation reaction (MOR). The mass and specific activities of CoPt TONPs is 8 and 6 times higher than that of standard commercial Pt/C, respectively. After accelerated durability test (ADT), the loss of electrochemical surface area (ECSA) for CoPt TONPs is only 18.5%, which is significantly less than that of commercial Pt/C (68.2%), indicating that CoPt TONPs possess much better stability than commercial Pt/C in the prolonged operation. The Curie temperature of CoPt TONPs down to 8 nm is as high as 350 K with weak ferromagntism at room temperature (RT), which is greatly valuable for recycling in the eletrocatalytic applications.
文摘A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723-773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.
基金supported by the National Natural Science Foundation of China (Grant No.50721091)
文摘Wurzite ZnS:Mn nanorods are synthesized via a solvothermal method by using ethylenediamine and water as mixed solvent.The diameters of the nanorods increase and the lengths decrease with the Mn concentration.High resolution transmission electron microscopic images illustrate that a few cubic ZnS:Mn nanoparticles arise along with hexagonal nanorods on high Mn concentration.The samples set off yellow-orange emission at 590 nm,characteristic of 4 T→ 6 A 1 transition of Mn 2+ at T d symmetry in ZnS.Electron spin resonance spectrum of the nanorods shows that high Mn concentrations produce a broad envelope,whereas six-line hyperfine appears for lower Mn concentrations.These results together with the magnetization curves indicate that all the ZnS:Mn samples are paramagnetic even down to 4 K,which suggests that the ZnS:Mn is not suitable for dilute magnetic semiconductor.
基金Supported by the National Natural Science Foundation of China (No. 40971131)the Ph.D. Program Foundation of Ministry of Education of China (No. 20090101110088)
文摘Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (〈 100 nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis, trace element cycling, contaminant transport, and chemical reaction. The nano-sized fraction of an Anthrosol was obtained to determine the occurrence, chemical composition, structure, and mineral phases of nanoparticles using high-resolution transmission electron microscopy (HRTEM) equipped with an energy-dispersive X-ray spectroscopy. Selected area electron diffraction or the fast Fourier transform of high-resolution images was used in structural characterization of the nanoparticles with HRTEM. Two nanoscale mineral types, i.e., mineral nanoparticles and nanomi- nerals, were observed in the Anthrosol. Mineral nanoparticles in soil included well crystalline aluminumsilicate nanosheets, nanorods, and nanoparticles. Nanosheets with a length of 120-150 nm and a width of about 10-20 nm were identified as chlorite/vermiculite series. The presence of clear lattice fringe spacing in HRTEM image of nanoparticles indicated that mineral nanoparticles had a relatively good crystallinity. The nanomineral ferrihydrite also existed in the Anthrosol. The HRTEM images and the particle size distribution histogram suggested that these ferrihydrite nanoparticles were quite homogeneous, and had a narrow size distribution range (1-7 nm) with a mean diameter of 3.6 4- 1.6 nm. Our HRTEM observation indicated that mineral nanoparticles and nanominerals were common and widely distributed in Anthrosols. HRTEM and selected area diffraction or lattice fringe spacing characterization provided further proofs to the structure of nanoparticles formed in soil.