In order to determine the effects of different mineral admixtures including fly ash (FA), blast furnace slag (BFS) and metakaolin (MK) on hydration product phases from the nanoscale structure perspective, nanoin...In order to determine the effects of different mineral admixtures including fly ash (FA), blast furnace slag (BFS) and metakaolin (MK) on hydration product phases from the nanoscale structure perspective, nanoindentation characteristics of the samples with similar 28-day strengths have been investigated. The results indicate that the volume fractions of porosity in po- rosity and hydration product phases of the samples with the same kind of mineral admixture are almost equal to each other, and are greater than that of the sample without mineral admixture. Mineral admixtures especially MK can decrease remarkably the volume fractions of CH in porosity and hydration product phases, and there exists a good linear relationship between the (AI+Si)/Ca molar ratio of cementitious materials chemical compositions and the volume fraction of HD C-S-H gel in C-S-H gel. Therefore, it is possible to predict the volume fraction change of HD C-S-H gel in C-S-H gel by simply calculating the (AI+Si)/Ca molar ratio of cementitious materials with similar 28-day strengths under the constant water-binder ratio.展开更多
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2009CB623200)the Airport Building Research Program of Jiangsu Province China(Grant No.LKJC-11-KY-001)the Research and Application Program of China’s Ministry of Railways(Grant No.2010g004-h)
文摘In order to determine the effects of different mineral admixtures including fly ash (FA), blast furnace slag (BFS) and metakaolin (MK) on hydration product phases from the nanoscale structure perspective, nanoindentation characteristics of the samples with similar 28-day strengths have been investigated. The results indicate that the volume fractions of porosity in po- rosity and hydration product phases of the samples with the same kind of mineral admixture are almost equal to each other, and are greater than that of the sample without mineral admixture. Mineral admixtures especially MK can decrease remarkably the volume fractions of CH in porosity and hydration product phases, and there exists a good linear relationship between the (AI+Si)/Ca molar ratio of cementitious materials chemical compositions and the volume fraction of HD C-S-H gel in C-S-H gel. Therefore, it is possible to predict the volume fraction change of HD C-S-H gel in C-S-H gel by simply calculating the (AI+Si)/Ca molar ratio of cementitious materials with similar 28-day strengths under the constant water-binder ratio.