A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully de...A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully deposited by double bias voltage nucleation and grid bias voltage growth. The Micro-Raman XRD SEM and AFM are used to investigate the diamond grain size, microstructure, surface morphology, and nucleation density. Results show that the obtained NCD has grain size of about 20 nm. The effect of grid bias voltage on the nucleation and the diamond growth is studied. Experimental results and theoretical analysis show that the positive grid bias increases the plasma density near the hot filaments, enhances the diamond nucleation, keeps the nanometer size of the diamond grains, and improves the quality of diamond film.展开更多
Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The ...Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The morphologies of template and copper nano-wires arrays were characterized by means of field emission scanning electron microscope (FESEM) and the crystal structure of copper nano-wires was determined by means of X-ray diffraction. The results indicate that copper nano-wires hold the preferred crystalline orientation along (111), (200), (220) and (331) crystal faces during growth, and the growth of copper nano-wires in the nano-holes of the template is homogenous and continuous.展开更多
The mode frequency and the quality factor of nanowire cavities are calculated for the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In the free-standin...The mode frequency and the quality factor of nanowire cavities are calculated for the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In the free-standing nanowire cavity with the dielectric constant ε=6.0 and the length of 5μm, the quality factors of 130,159,and 151 are obtained for modes with frequency around 798 THz,at the cavity radius of 60 nm, 75 nm, and 90 nm, respectively. The obtained field distribution of the fundamental transverse mode shows that the mode field is confined very well by the nanowire cavity even when the radius of nanowire is much smaller than the mode wavelength.展开更多
We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical va...We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical vapor deposition method, in which CH4 and H2 act as a source and diluting gases, respectively. N2, H2, and NH3 were used as the etching gases, respectively. Results show that the optimum conditions can be obtained only for the case of H2 gas. The crystal morphology and crystallinity of the samples have been examined by scanning electron microscopy and X-ray diffraction, respectively.展开更多
Synthesis and characterization of mechanically alloyed Pt-5%ZrO2(volume fraction) for structural components in the glass industry were described. Zirconia(ZrO2) nanoparticles(<100 nm) were produced by the electrica...Synthesis and characterization of mechanically alloyed Pt-5%ZrO2(volume fraction) for structural components in the glass industry were described. Zirconia(ZrO2) nanoparticles(<100 nm) were produced by the electrical explosion of zirconium(Zr) wires, and blended with platinum(Pt) powders(<44 ?m) for 2-72 h in ambient atmosphere. The Pt particle size followed the typical decreasing trend of the normal ball milling process up to 48 h, but particle agglomeration was observed at 72 h. The grain size evolution was similar to that of the particle size, dropping down to around 50 nm at 48 h. The root mean square strain of the Pt crystallites showed the opposite behavior, maximizing at 48 h with a subsequent relaxation process. For the 48 h ball milled powders, spark plasma sintering was carried out to form a bulk disk. The measured mass loss of the sintered bulk sample shows a decent thermal stability despite its relatively low density.展开更多
Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous h...Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg_2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0(the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(R_5~a)(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(R_(1 0)~d)(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the(x=10) alloy, respectively.展开更多
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated....The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Zn(Ⅱ)>Cd(Ⅱ)>Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.展开更多
文摘A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully deposited by double bias voltage nucleation and grid bias voltage growth. The Micro-Raman XRD SEM and AFM are used to investigate the diamond grain size, microstructure, surface morphology, and nucleation density. Results show that the obtained NCD has grain size of about 20 nm. The effect of grid bias voltage on the nucleation and the diamond growth is studied. Experimental results and theoretical analysis show that the positive grid bias increases the plasma density near the hot filaments, enhances the diamond nucleation, keeps the nanometer size of the diamond grains, and improves the quality of diamond film.
文摘Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The morphologies of template and copper nano-wires arrays were characterized by means of field emission scanning electron microscope (FESEM) and the crystal structure of copper nano-wires was determined by means of X-ray diffraction. The results indicate that copper nano-wires hold the preferred crystalline orientation along (111), (200), (220) and (331) crystal faces during growth, and the growth of copper nano-wires in the nano-holes of the template is homogenous and continuous.
基金This work was supported by the National Nature Science Foun-dation of China under grant No.60225011 ,Major State Basic Re-search Programunder grant No.G2000036606 ,andthe project of"863" plan under grant 2003AA311070 .
文摘The mode frequency and the quality factor of nanowire cavities are calculated for the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In the free-standing nanowire cavity with the dielectric constant ε=6.0 and the length of 5μm, the quality factors of 130,159,and 151 are obtained for modes with frequency around 798 THz,at the cavity radius of 60 nm, 75 nm, and 90 nm, respectively. The obtained field distribution of the fundamental transverse mode shows that the mode field is confined very well by the nanowire cavity even when the radius of nanowire is much smaller than the mode wavelength.
文摘We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical vapor deposition method, in which CH4 and H2 act as a source and diluting gases, respectively. N2, H2, and NH3 were used as the etching gases, respectively. Results show that the optimum conditions can be obtained only for the case of H2 gas. The crystal morphology and crystallinity of the samples have been examined by scanning electron microscopy and X-ray diffraction, respectively.
基金Project(10037339) supported by the Industrial Strategic Technology Development Program of the Ministry of Knowledge&Economy,Korea
文摘Synthesis and characterization of mechanically alloyed Pt-5%ZrO2(volume fraction) for structural components in the glass industry were described. Zirconia(ZrO2) nanoparticles(<100 nm) were produced by the electrical explosion of zirconium(Zr) wires, and blended with platinum(Pt) powders(<44 ?m) for 2-72 h in ambient atmosphere. The Pt particle size followed the typical decreasing trend of the normal ball milling process up to 48 h, but particle agglomeration was observed at 72 h. The grain size evolution was similar to that of the particle size, dropping down to around 50 nm at 48 h. The root mean square strain of the Pt crystallites showed the opposite behavior, maximizing at 48 h with a subsequent relaxation process. For the 48 h ball milled powders, spark plasma sintering was carried out to form a bulk disk. The measured mass loss of the sintered bulk sample shows a decent thermal stability despite its relatively low density.
基金Projects(51161015,51371094)supported by the National Natural Science Foundation of China
文摘Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg_2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0(the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(R_5~a)(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(R_(1 0)~d)(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the(x=10) alloy, respectively.
文摘The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Zn(Ⅱ)>Cd(Ⅱ)>Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.