通过水热法在锂硫电池正极材料硫碳复合物表面包覆纳米金属氢氧化物抑制多硫化物的穿梭,很好地改善了电池的循环性能。利用扫描电镜(SEM)、恒流充放电和交流阻抗等方法比较了不同包覆层氢氧化铝、氢氧化钴、氢氧化铈对锂硫电池性能的影...通过水热法在锂硫电池正极材料硫碳复合物表面包覆纳米金属氢氧化物抑制多硫化物的穿梭,很好地改善了电池的循环性能。利用扫描电镜(SEM)、恒流充放电和交流阻抗等方法比较了不同包覆层氢氧化铝、氢氧化钴、氢氧化铈对锂硫电池性能的影响。其中,用氢氧化铝包覆的硫碳复合材料显示了较好的电化学性能,在100 m A/g充放电条件下,首次充放电比容量为1 192 m Ah/g,80次循环后放电比容量为797 m Ah/g,容量保持率达67%。0.5 C条件下,放电比容量达754 m Ah/g。展开更多
为了提高海藻酸钠(SA)对疏水性农药的负载量和释药缓释作用,将其与月桂醇通过偶联酯化反应进行疏水改性,对改性后的海藻酸钠进行红外光谱、核磁共振表征分析,结果证明月桂醇侧链成功接枝到海藻酸钠分子骨架上。将月桂醇改性海藻酸钠(DA...为了提高海藻酸钠(SA)对疏水性农药的负载量和释药缓释作用,将其与月桂醇通过偶联酯化反应进行疏水改性,对改性后的海藻酸钠进行红外光谱、核磁共振表征分析,结果证明月桂醇侧链成功接枝到海藻酸钠分子骨架上。将月桂醇改性海藻酸钠(DA)和十六烷基三甲基溴化铵(CTAB)与层状双金属氢氧化物(LDH)纳米颗粒进行复配,其Zeta电位分别为+44.9 m V和-33.2 m V,同时其粒径分别增大到93.3 nm和659.8 nm。结果表明带负电的月桂醇改性海藻酸钠吸附在层状双金属氢氧化物颗粒表面可以阻碍颗粒间的相互聚集,在分散体系中表现出了良好的稳定性能。高速剪切下制备稳定Pickering乳液,对疏水性农药氯氟氰菊酯进行了释药试验,表明改性后的海藻酸钠与LDH颗粒制备Pickering乳液对氯氟氰菊酯具有较好的药物缓释作用。展开更多
文摘通过水热法在锂硫电池正极材料硫碳复合物表面包覆纳米金属氢氧化物抑制多硫化物的穿梭,很好地改善了电池的循环性能。利用扫描电镜(SEM)、恒流充放电和交流阻抗等方法比较了不同包覆层氢氧化铝、氢氧化钴、氢氧化铈对锂硫电池性能的影响。其中,用氢氧化铝包覆的硫碳复合材料显示了较好的电化学性能,在100 m A/g充放电条件下,首次充放电比容量为1 192 m Ah/g,80次循环后放电比容量为797 m Ah/g,容量保持率达67%。0.5 C条件下,放电比容量达754 m Ah/g。
文摘为有效提升锂氧电池的电化学性能,以钴铝复合金属氢氧化物(Co Al-LDH)作为催化剂,研究其对锂空气电池性能的影响.采用工艺简单、成本低廉的共沉淀法将其与石墨烯复合后,制备出r GO/Co Al-LDH纳米复合材料,并将其应用于锂氧电池.采用X射线衍射、拉曼光谱、同步热分析和扫描电镜对材料结构进行表征,利用恒流充放电测试、交流阻抗测试(EIS)和线性伏安扫描(LSV)对电池电化学性能进行表征.研究结果表明:制备得到的纳米复合材料可明显提升氧还原反应(ORR)的催化活性,首次放电容量达到2 662 m A·h·g^(-1),与单纯石墨烯相比提高了51.5%,同时充电电位降低了430 m V.循环过程中电池库伦效率较高,电池循环性能得到显著改善.
文摘为了提高海藻酸钠(SA)对疏水性农药的负载量和释药缓释作用,将其与月桂醇通过偶联酯化反应进行疏水改性,对改性后的海藻酸钠进行红外光谱、核磁共振表征分析,结果证明月桂醇侧链成功接枝到海藻酸钠分子骨架上。将月桂醇改性海藻酸钠(DA)和十六烷基三甲基溴化铵(CTAB)与层状双金属氢氧化物(LDH)纳米颗粒进行复配,其Zeta电位分别为+44.9 m V和-33.2 m V,同时其粒径分别增大到93.3 nm和659.8 nm。结果表明带负电的月桂醇改性海藻酸钠吸附在层状双金属氢氧化物颗粒表面可以阻碍颗粒间的相互聚集,在分散体系中表现出了良好的稳定性能。高速剪切下制备稳定Pickering乳液,对疏水性农药氯氟氰菊酯进行了释药试验,表明改性后的海藻酸钠与LDH颗粒制备Pickering乳液对氯氟氰菊酯具有较好的药物缓释作用。