Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 ...Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.展开更多
Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and...Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications.展开更多
Water splitting powered by clean electricity is a sustainable and promising approach to produce green hydrogen.Currently,noble metal(e.g.Iridium,Ruthenium,Platinum)-based catalysts are most widely used for water split...Water splitting powered by clean electricity is a sustainable and promising approach to produce green hydrogen.Currently,noble metal(e.g.Iridium,Ruthenium,Platinum)-based catalysts are most widely used for water splitting electrolysis.However,noble metal-based catalysts often suffer from multiple disadvantages,including high cost,low selectivity and poor durability.The emergence of metal-organic framework nanosheets(MOFNSs)attracts significant attention due to their unique advantages.Here,a concise,yet comprehensive and critical,review of recent advances in the field of MOFNSs is provided.This review explains the fundamental oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)catalytic mechanisms as well as key characterization techniques for the structure-activity relationship study are discussed.Moreover,it discusses efficient design strategies and the brief research advances of MOFNSs in HER,OER,and bifunctional electrocatalysis,along with some challenges and opportunities.展开更多
Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the de...Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the derivatives avoid the poor conductivity and stability of MOFs.MOF‐derived nanomaterials can easily be regulated by a specific selection of metal nodes and organic linkers,resulting in multifunctionality in photocatalysis.MOF derivatives can be used not only as semiconductor photocatalysts,but also as co‐catalysts for photocatalytic hydrogen evolution,CO_(2) reduction,pollutants degradation,etc.This review focuses on the multifunctional applications of MOF derivatives in the field of photocatalysis.The researches in recent years are analyzed and summarized from the aspects of preparation,modification and application of MOF derivatives.At the end of the review,the development and challenges of MOF derivatives applied in photocatalysis in the future are put forward,in order to provide more references for further research in this field and bring new inspiration.展开更多
MoS2 is a promising candidate for catalyzing hydrogen evolution reaction (HER) due to its low cost and high activity. However, the poor conductivity and the stack of active sites of bulk MoS2 hinder its application. H...MoS2 is a promising candidate for catalyzing hydrogen evolution reaction (HER) due to its low cost and high activity. However, the poor conductivity and the stack of active sites of bulk MoS2 hinder its application. Herein, a new facile solid-state synthesis strategy was developed to fabricate MoS2 nanorods by one-step pyrolysis of molybdenum-organic framework (Mo-MOF) in the presence of thiourea. The obtained MoS2 keeps the Mo-MOF nanorod structure with more active sites, while the residual carbon left in the nanorod enhances the conductivity. The as-prepared MoS2 nanorods exhibit superior stability and excellent activity towards HER with a small onset potential of 96 mV and a low Tafel slope of 93 mV decade^-1.展开更多
基金supported by the National Natural Science Foundation of China(No.22090050,No.22090052,No.22176180)National Basic Research Program of China(No.2021YFA1200400)+1 种基金the Natural Science Foundation of Hubei Province(No.2024AFA001)Shenzhen Science and Technology Program(No.JCYJ20220530162406014)。
文摘Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.
文摘Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications.
文摘Water splitting powered by clean electricity is a sustainable and promising approach to produce green hydrogen.Currently,noble metal(e.g.Iridium,Ruthenium,Platinum)-based catalysts are most widely used for water splitting electrolysis.However,noble metal-based catalysts often suffer from multiple disadvantages,including high cost,low selectivity and poor durability.The emergence of metal-organic framework nanosheets(MOFNSs)attracts significant attention due to their unique advantages.Here,a concise,yet comprehensive and critical,review of recent advances in the field of MOFNSs is provided.This review explains the fundamental oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)catalytic mechanisms as well as key characterization techniques for the structure-activity relationship study are discussed.Moreover,it discusses efficient design strategies and the brief research advances of MOFNSs in HER,OER,and bifunctional electrocatalysis,along with some challenges and opportunities.
文摘Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the derivatives avoid the poor conductivity and stability of MOFs.MOF‐derived nanomaterials can easily be regulated by a specific selection of metal nodes and organic linkers,resulting in multifunctionality in photocatalysis.MOF derivatives can be used not only as semiconductor photocatalysts,but also as co‐catalysts for photocatalytic hydrogen evolution,CO_(2) reduction,pollutants degradation,etc.This review focuses on the multifunctional applications of MOF derivatives in the field of photocatalysis.The researches in recent years are analyzed and summarized from the aspects of preparation,modification and application of MOF derivatives.At the end of the review,the development and challenges of MOF derivatives applied in photocatalysis in the future are put forward,in order to provide more references for further research in this field and bring new inspiration.
基金the financial support from the National Key Research and Development Program of China (2017YFA0700100 and 2018YFA0208600)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)+2 种基金National Natural Science Foundation of China (21671188, 21871263 and 21331006)Key Research Program of Frontier Science, CAS (QYZDJSSW-SLH045)Youth Innovation Promotion Association, CAS (2014265)
文摘MoS2 is a promising candidate for catalyzing hydrogen evolution reaction (HER) due to its low cost and high activity. However, the poor conductivity and the stack of active sites of bulk MoS2 hinder its application. Herein, a new facile solid-state synthesis strategy was developed to fabricate MoS2 nanorods by one-step pyrolysis of molybdenum-organic framework (Mo-MOF) in the presence of thiourea. The obtained MoS2 keeps the Mo-MOF nanorod structure with more active sites, while the residual carbon left in the nanorod enhances the conductivity. The as-prepared MoS2 nanorods exhibit superior stability and excellent activity towards HER with a small onset potential of 96 mV and a low Tafel slope of 93 mV decade^-1.