Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemic...Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.展开更多
Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bat...Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bath temperature, and pH on deposition rate are discussed. The prepared carbon nanotubes covered with Ni-Co-P were characterized and analyzed by fieldemission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and a vibrating sample magnetometer. The results show that the deposition rate reached the maximum when the concentration ratio of Co^2+ to Ni^2+ is 1 and the pH is 9; the deposition rate increases with the increase of bath temperature. The measurements of the magnetic properties of the obtained carbon nanotubes covered with Ni-Co-P indicate that the magnetic properties greatly depend on the concentration ratio of Co^2+ to Ni^2+, and the magnetic saturation reaches the maximum value when the Co^2+ to Ni^2+ ratio is 1. In addition, there are two peaks in the coercivity curve at Co^2+ to Ni^2+ ratios of 1/2 and 4/1, while the two peaks in the magnetic conductivity curve are located at Co^2+ to Ni^2+ ratios of 1/4 and 4/1.展开更多
Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years.This paper describes the synthesis of Pd nanoparticles supported ...Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years.This paper describes the synthesis of Pd nanoparticles supported on CeO2 nanotubes via an alcohol reduction method.The effect of the support morphology on the catalytic reaction was explored.Subsequently,the performance of the prepared catalysts was investigated toward CO oxidation reaction and characterized by Nitrogen sorption,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and CO-temperature-programmed desorption techniques.The results indicated that the catalyst of Pd on CeO2 nanotubes exhibits excellent activity in CO oxidation at low temperatures,due to its large surface area,the high dispersion of Pd species,the mesoporous and tubular structure of the CeO2-nanotube support,the abundant Ce3+,formation of Pd–O–Ce bonding,and enhanced metal–support interaction on the catalyst surface.展开更多
The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters we...The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.展开更多
AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform inf...AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM),transmission electron microscope(TEM)and room temperature(RT)tensile test.Theresults show that CNTs were homogeneously distributed in the matrix and maintained integrated structure.The yield strength andductility of AZ91D/CNTs composite were improved by47.2%and112.2%,respectively,when compared with the AZ91alloy.Theuniform distribution of CNTs and the strong interfacial bonds between CNT and the matrix are dominated to the simultaneousimprovement of yield strength and ductility of the composite.In addition,the grain refinement as well as the finerβphase(Mg17Al12)with homogenous distribution in the matrix can also slightly assist to the enhancement of the mechanical properties of thecomposite.展开更多
Electroless Ni-Fe-P alloy plating on the surface of CNTs was carded out with a bath using citrate salt and lactic acid as complex agents. We proposed a chemical reaction mechanism. The morphology, structure and chemic...Electroless Ni-Fe-P alloy plating on the surface of CNTs was carded out with a bath using citrate salt and lactic acid as complex agents. We proposed a chemical reaction mechanism. The morphology, structure and chemical composition of the Ni-Fe-P/CNTs were studied with the aid of a scanning electronic microscope (SEM), X-ray diffraction (XRD) and an energy-dispersive X-ray spectral analysis (EDS). The results show that through a correct pre-treatment and electroless plating, Ni-Fe-P/CNTs composite particles can be obtained. The optimum electroless plating parameters of 35-42℃ and pH of 8.5-9.7 were achieved. The as-plated Ni-Fe-P alloy is amorphous. After a heat treatment at 500℃ for 90 min in H2, the coating is transformed into crystalloid Ni3E Fe2NiP and (Fe,Ni)3R The Ni-Fe-P alloy coating on the surface of CNTs is smooth and unique. The amount of Ni on the surface (mass fraction) of the Ni-Fe-P/CNTs composite particles is 29.13%, that of Fe 3.19% and that of P 2.28%.展开更多
Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocompo...Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocomposites were subjected to density, hardness, electrical conductivity, and friction and wear tests. The results reveal that the density of nanocomposite decreases with the increase of the mass fraction of CNTs. A significant improvement in the hardness is noticed in the nanocomposite with the addition of CNTs. The developed nanocomposites show low coefficient of friction and improved wear resistance when compared with unreinforced alloy. At an applied load of 5 N, the coefficient of friction and wear loss of 2%CNTs reinforced Cu-Sn alloy nanocomposite decrease by 72% and 68%, respectively, compared with those of Cu-Sn alloy. The wear mechanisms of worn surfaces of the composites are reported. In addition, the electrical conductivity reduces with the increase of the content of CNTs.展开更多
Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of th...Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.展开更多
The molecular level mixing method was extended to fabricate carbon nanotube reinforced silver composite. The influence of type of carbon nanotubes(single/multiwall) reinforcement and their mode of functionalization...The molecular level mixing method was extended to fabricate carbon nanotube reinforced silver composite. The influence of type of carbon nanotubes(single/multiwall) reinforcement and their mode of functionalization(covalent/non-covalent) on thermal conductivity of silver composite was investigated. X-ray diffraction and electron diffraction spectroscopy(EDS) confirm the presence of silver and carbon in the composite powder. High resolution scanning electron microscopy and transmission electron microscopy ascertain embedded, anchored and homogeneously implanted carbon nanotubes in silver matrix. Effect of covalent functionalization on multiwall carbon nanotubes was monitored by Raman and Fourier transform infrared spectroscopy. These investigations confirm the addition of functional groups and structural integrity of carbon nanotubes even after covalent functionalization. Thermal conductivity of composites was measured by a laser flash technique and theoretically analyzed using an effective medium approach. The experimental results reveal that thermal conductivity decreases after incorporation of covalently functionalized multiwall nanotubes and single wall carbon nanotubes. However, non-covalently functionalized multiwall nanotube reinforcement leads to the increase in effective thermal conductivity of the composite and is in agreement with theoretical predictions derived from effective medium theory, in absence of interfacial thermal resistance.展开更多
The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate...The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.展开更多
Catalytic hydrodeoxygenation(HDO)is one of the most promising strategies to transform oxygen-rich biomass derivatives into high value-added chemicals and fuels,but highly challenging due to the lack of highly efficien...Catalytic hydrodeoxygenation(HDO)is one of the most promising strategies to transform oxygen-rich biomass derivatives into high value-added chemicals and fuels,but highly challenging due to the lack of highly efficient nonprecious metal catalysts.Herein,we report for the first time of a facile synthetic approach to controllably fabricate well-defined Ni-Co alloy NPs confined on the tip of N-CNTs as HDO catalyst.The resultant Ni-Co alloy catalyst possesses outstanding HDO performance towards biomass-derived vanillin into 2-methoxy-4-methylphenol in water with 100%conversion efficiency and selectivity under mild reaction conditions,surpassing the reported high performance nonprecious HDO catalysts.Impressively,our experimental results also unveil that the Ni-Co alloy catalyst can be generically applied to catalyze HDO of vanillin derivatives and other aromatic aldehydes in water with 100%conversion efficiency and over 90%selectivity.Importantly,our DFT calculations and experimental results confirm that the achieved outstanding HDO catalytic performance is due to the greatly promoted selective adsorption and activation of C=O,and desorption of the activated hydrogen species by the synergism of the alloyed Ni-Co NPs.The findings of this work affords a new strategy to design and develop efficient transition metal-based catalysts for HDO reactions in water.展开更多
The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a ...The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-lmin-i), and good reusability of GNTs/CHNTs.展开更多
Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were disp...Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water, ethanol and KCI. The potentials generated from these samples were measured by a voltmeter. Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes, and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors. The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors. This property of MWCNTs can advantage their application to nanoscale sensors, detectors and power cells.展开更多
Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel ...Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel nanostructures. The CoB16- cluster was found to be composed of a central Co atom coordinated by two fused B8 rings in a tubular structure, representing the potential embryo of metal-filled boron nanotubes and providing opportunities to design one-dimensional metal-boron nanostructures. Here we report improved photoelectron spectroscopy and a more in-depth electronic structure analysis of CoB16-, providing further insight into the chemical bonding and stability of the drum-like doped boron tubular structures. Most interestingly, we find that the central Co atom has an unusually low oxidation state of ?1 and neutral CoB16 can be viewed as a charge transfer complex (Co-@BB16+), suggesting both covalent and electrostatic interactions between the dopant and the boron drum.展开更多
A356 aluminum alloys reinforced with carbon nano-tubes (CNTs) were produced by stir casting and compocasting routes and their microstructural characteristics and hardness were examined.In order to alleviate the proble...A356 aluminum alloys reinforced with carbon nano-tubes (CNTs) were produced by stir casting and compocasting routes and their microstructural characteristics and hardness were examined.In order to alleviate the problems associated with poor wettability, agglomeration and gravity segregation of CNTs in the melt, CNTs were introduced into the melts by injection of CNT deposited aluminum particles instead of raw CNTs.Aluminum particles with mean diameters of less than 100 μm were first deposited by CNTs using Ni-P electroless plating technique and then injected into the melt agitated by a mechanical stirrer.The slurry was subsequently cast at temperatures corresponding to full liquid as well as 0.15 and 0.30 solid fractions.The results show that addition of CNTs to A356 matrix can significantly refine both full liquid and semi-solid cast microstructures.Hardness of the samples is also significantly increased by addition of CNTs and A356-CNT composite cast at 0.3 solid fraction produces the highest hardness.展开更多
The paper presents a study of the growth and characterization of carbon nanotube-rutile nanocomposites. The heterostructures were obtained with a chemical mixing method. Scanning electron microscope images show that t...The paper presents a study of the growth and characterization of carbon nanotube-rutile nanocomposites. The heterostructures were obtained with a chemical mixing method. Scanning electron microscope images show that the samples appear as a homogeneous powder of rutile with carbon nanotubes intercalated in interspaces between the TiO2 grains. Characterization by both X-ray photoelectron spectroscopy and cathodo-luminescence analysis show the formation of CO-Ti chemical bonds with a decrease of 0.8 eV in the band gap compared to pure rutile. The consequence of this band gap modification is a strong change in optical properties. Luminescence emission is drastically reduced and absorption in the visible range is increased of about 6% at very low concentration (1%) of carbon nanotubes.展开更多
The wear behavior of multi-walled carbon nano-tubes(MWCNTs)reinforced copper metal matrix composites(MMCs)processed through powder metallurgy(PM)route was focused on and further investigated for varying MWCNT quantity...The wear behavior of multi-walled carbon nano-tubes(MWCNTs)reinforced copper metal matrix composites(MMCs)processed through powder metallurgy(PM)route was focused on and further investigated for varying MWCNT quantity viaexperimental,statistical and artificial neural network(ANN)techniques.Microhardness increases with increment in MWCNTquantity.Wear loss against varying load and sliding distance was analyzed as per L16orthogonal array using a pin-on-disctribometer.Process parameter optimization by Taguchi’s method revealed that wear loss was affected to a greater extent by theintroduction of MWCNT;this wear resistant property of newer composite was further analyzed and confirmed through analysis ofvariance(ANOVA).MWCNT content(76.48%)is the most influencing factor on wear loss followed by applied load(12.18%)andsliding distance(9.91%).ANN model simulations for varying hidden nodes were tried out and the model yielding lower MAE valuewith3-7-1network topology is identified to be reliable.ANN model predictions with R value of99.5%which highly correlated withthe outcomes of ANOVA were successfully employed to investigate individual parameter’s effect on wear loss of Cu?MWCNTMMCs.展开更多
Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanic...Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.展开更多
Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we rep...Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film- assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.展开更多
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.
基金ACKNOWLEDGMENTS This work was supported by Project of Fundamental Research the National Major Nanomaterials and Nanostructures (No.2005CB623603) and the National Natural Science Foundation of China (No.10674138).
文摘Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bath temperature, and pH on deposition rate are discussed. The prepared carbon nanotubes covered with Ni-Co-P were characterized and analyzed by fieldemission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and a vibrating sample magnetometer. The results show that the deposition rate reached the maximum when the concentration ratio of Co^2+ to Ni^2+ is 1 and the pH is 9; the deposition rate increases with the increase of bath temperature. The measurements of the magnetic properties of the obtained carbon nanotubes covered with Ni-Co-P indicate that the magnetic properties greatly depend on the concentration ratio of Co^2+ to Ni^2+, and the magnetic saturation reaches the maximum value when the Co^2+ to Ni^2+ ratio is 1. In addition, there are two peaks in the coercivity curve at Co^2+ to Ni^2+ ratios of 1/2 and 4/1, while the two peaks in the magnetic conductivity curve are located at Co^2+ to Ni^2+ ratios of 1/4 and 4/1.
基金supported by the National Natural Science Foundation of China(21376209,21376169)Zhejiang Provincial Natural Science Foundation(LZ13B060004)+1 种基金Program for Zhejiang Leading Team of S&T Innovation(2013TD07)Program of Introducing Talents of Discipline to Universities(B06006)~~
文摘Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years.This paper describes the synthesis of Pd nanoparticles supported on CeO2 nanotubes via an alcohol reduction method.The effect of the support morphology on the catalytic reaction was explored.Subsequently,the performance of the prepared catalysts was investigated toward CO oxidation reaction and characterized by Nitrogen sorption,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and CO-temperature-programmed desorption techniques.The results indicated that the catalyst of Pd on CeO2 nanotubes exhibits excellent activity in CO oxidation at low temperatures,due to its large surface area,the high dispersion of Pd species,the mesoporous and tubular structure of the CeO2-nanotube support,the abundant Ce3+,formation of Pd–O–Ce bonding,and enhanced metal–support interaction on the catalyst surface.
基金Project (2012CB932800) supported by the National Basic Research Program of ChinaProject (2012M521330) supported by China Postdoctoral Science Foundation
文摘The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.
基金Project(51464034) supported by the National Natural Science Foundation of ChinaProjects(GJJ151309,GJJ151010) supported by the Education Department of Jiangxi Province,China
文摘AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM),transmission electron microscope(TEM)and room temperature(RT)tensile test.Theresults show that CNTs were homogeneously distributed in the matrix and maintained integrated structure.The yield strength andductility of AZ91D/CNTs composite were improved by47.2%and112.2%,respectively,when compared with the AZ91alloy.Theuniform distribution of CNTs and the strong interfacial bonds between CNT and the matrix are dominated to the simultaneousimprovement of yield strength and ductility of the composite.In addition,the grain refinement as well as the finerβphase(Mg17Al12)with homogenous distribution in the matrix can also slightly assist to the enhancement of the mechanical properties of thecomposite.
基金Projects 20060359011 supported by the Doctoral Subject Foundation of the Ministry of Education of China103-037016 by the Technological Innovation Foundation of Hefei University of Technology
文摘Electroless Ni-Fe-P alloy plating on the surface of CNTs was carded out with a bath using citrate salt and lactic acid as complex agents. We proposed a chemical reaction mechanism. The morphology, structure and chemical composition of the Ni-Fe-P/CNTs were studied with the aid of a scanning electronic microscope (SEM), X-ray diffraction (XRD) and an energy-dispersive X-ray spectral analysis (EDS). The results show that through a correct pre-treatment and electroless plating, Ni-Fe-P/CNTs composite particles can be obtained. The optimum electroless plating parameters of 35-42℃ and pH of 8.5-9.7 were achieved. The as-plated Ni-Fe-P alloy is amorphous. After a heat treatment at 500℃ for 90 min in H2, the coating is transformed into crystalloid Ni3E Fe2NiP and (Fe,Ni)3R The Ni-Fe-P alloy coating on the surface of CNTs is smooth and unique. The amount of Ni on the surface (mass fraction) of the Ni-Fe-P/CNTs composite particles is 29.13%, that of Fe 3.19% and that of P 2.28%.
文摘Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocomposites were subjected to density, hardness, electrical conductivity, and friction and wear tests. The results reveal that the density of nanocomposite decreases with the increase of the mass fraction of CNTs. A significant improvement in the hardness is noticed in the nanocomposite with the addition of CNTs. The developed nanocomposites show low coefficient of friction and improved wear resistance when compared with unreinforced alloy. At an applied load of 5 N, the coefficient of friction and wear loss of 2%CNTs reinforced Cu-Sn alloy nanocomposite decrease by 72% and 68%, respectively, compared with those of Cu-Sn alloy. The wear mechanisms of worn surfaces of the composites are reported. In addition, the electrical conductivity reduces with the increase of the content of CNTs.
文摘Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.
基金support from Department of Science and Technology [Project-SR/FTP/PS-054/2011(G)]
文摘The molecular level mixing method was extended to fabricate carbon nanotube reinforced silver composite. The influence of type of carbon nanotubes(single/multiwall) reinforcement and their mode of functionalization(covalent/non-covalent) on thermal conductivity of silver composite was investigated. X-ray diffraction and electron diffraction spectroscopy(EDS) confirm the presence of silver and carbon in the composite powder. High resolution scanning electron microscopy and transmission electron microscopy ascertain embedded, anchored and homogeneously implanted carbon nanotubes in silver matrix. Effect of covalent functionalization on multiwall carbon nanotubes was monitored by Raman and Fourier transform infrared spectroscopy. These investigations confirm the addition of functional groups and structural integrity of carbon nanotubes even after covalent functionalization. Thermal conductivity of composites was measured by a laser flash technique and theoretically analyzed using an effective medium approach. The experimental results reveal that thermal conductivity decreases after incorporation of covalently functionalized multiwall nanotubes and single wall carbon nanotubes. However, non-covalently functionalized multiwall nanotube reinforcement leads to the increase in effective thermal conductivity of the composite and is in agreement with theoretical predictions derived from effective medium theory, in absence of interfacial thermal resistance.
基金supported by the National Natural Science Foundation of China(21421001,21573115)~~
文摘The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.
文摘Catalytic hydrodeoxygenation(HDO)is one of the most promising strategies to transform oxygen-rich biomass derivatives into high value-added chemicals and fuels,but highly challenging due to the lack of highly efficient nonprecious metal catalysts.Herein,we report for the first time of a facile synthetic approach to controllably fabricate well-defined Ni-Co alloy NPs confined on the tip of N-CNTs as HDO catalyst.The resultant Ni-Co alloy catalyst possesses outstanding HDO performance towards biomass-derived vanillin into 2-methoxy-4-methylphenol in water with 100%conversion efficiency and selectivity under mild reaction conditions,surpassing the reported high performance nonprecious HDO catalysts.Impressively,our experimental results also unveil that the Ni-Co alloy catalyst can be generically applied to catalyze HDO of vanillin derivatives and other aromatic aldehydes in water with 100%conversion efficiency and over 90%selectivity.Importantly,our DFT calculations and experimental results confirm that the achieved outstanding HDO catalytic performance is due to the greatly promoted selective adsorption and activation of C=O,and desorption of the activated hydrogen species by the synergism of the alloyed Ni-Co NPs.The findings of this work affords a new strategy to design and develop efficient transition metal-based catalysts for HDO reactions in water.
文摘The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-lmin-i), and good reusability of GNTs/CHNTs.
基金Funded by the Science Foundation from the Scientific Committee of Chongqing ( No.CSTC2005BB4200).
文摘Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water, ethanol and KCI. The potentials generated from these samples were measured by a voltmeter. Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes, and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors. The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors. This property of MWCNTs can advantage their application to nanoscale sensors, detectors and power cells.
基金supported by the National Natural Science Foundation of China (No.21590792, No.91426302, and No.21433005)supported by the U.S. National Science Foundation (CHE-1763380)
文摘Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel nanostructures. The CoB16- cluster was found to be composed of a central Co atom coordinated by two fused B8 rings in a tubular structure, representing the potential embryo of metal-filled boron nanotubes and providing opportunities to design one-dimensional metal-boron nanostructures. Here we report improved photoelectron spectroscopy and a more in-depth electronic structure analysis of CoB16-, providing further insight into the chemical bonding and stability of the drum-like doped boron tubular structures. Most interestingly, we find that the central Co atom has an unusually low oxidation state of ?1 and neutral CoB16 can be viewed as a charge transfer complex (Co-@BB16+), suggesting both covalent and electrostatic interactions between the dopant and the boron drum.
文摘A356 aluminum alloys reinforced with carbon nano-tubes (CNTs) were produced by stir casting and compocasting routes and their microstructural characteristics and hardness were examined.In order to alleviate the problems associated with poor wettability, agglomeration and gravity segregation of CNTs in the melt, CNTs were introduced into the melts by injection of CNT deposited aluminum particles instead of raw CNTs.Aluminum particles with mean diameters of less than 100 μm were first deposited by CNTs using Ni-P electroless plating technique and then injected into the melt agitated by a mechanical stirrer.The slurry was subsequently cast at temperatures corresponding to full liquid as well as 0.15 and 0.30 solid fractions.The results show that addition of CNTs to A356 matrix can significantly refine both full liquid and semi-solid cast microstructures.Hardness of the samples is also significantly increased by addition of CNTs and A356-CNT composite cast at 0.3 solid fraction produces the highest hardness.
文摘The paper presents a study of the growth and characterization of carbon nanotube-rutile nanocomposites. The heterostructures were obtained with a chemical mixing method. Scanning electron microscope images show that the samples appear as a homogeneous powder of rutile with carbon nanotubes intercalated in interspaces between the TiO2 grains. Characterization by both X-ray photoelectron spectroscopy and cathodo-luminescence analysis show the formation of CO-Ti chemical bonds with a decrease of 0.8 eV in the band gap compared to pure rutile. The consequence of this band gap modification is a strong change in optical properties. Luminescence emission is drastically reduced and absorption in the visible range is increased of about 6% at very low concentration (1%) of carbon nanotubes.
文摘The wear behavior of multi-walled carbon nano-tubes(MWCNTs)reinforced copper metal matrix composites(MMCs)processed through powder metallurgy(PM)route was focused on and further investigated for varying MWCNT quantity viaexperimental,statistical and artificial neural network(ANN)techniques.Microhardness increases with increment in MWCNTquantity.Wear loss against varying load and sliding distance was analyzed as per L16orthogonal array using a pin-on-disctribometer.Process parameter optimization by Taguchi’s method revealed that wear loss was affected to a greater extent by theintroduction of MWCNT;this wear resistant property of newer composite was further analyzed and confirmed through analysis ofvariance(ANOVA).MWCNT content(76.48%)is the most influencing factor on wear loss followed by applied load(12.18%)andsliding distance(9.91%).ANN model simulations for varying hidden nodes were tried out and the model yielding lower MAE valuewith3-7-1network topology is identified to be reliable.ANN model predictions with R value of99.5%which highly correlated withthe outcomes of ANOVA were successfully employed to investigate individual parameter’s effect on wear loss of Cu?MWCNTMMCs.
基金supported by the National Natural Science Foundation of China (Nos. 51871068, 51971071, 52011530025, and U21A2049)the National Key Research and Development Program of China (No. 2021YFE0103200)+1 种基金the Zhejiang Province Key Research and Development Program, China (No. 2021C01086)the Fundamental Research Funds for the Central Universities, China (No. 3072021CFT1010)。
文摘Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.
文摘Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film- assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.