基于L-半胱氨酸(L-Cysteine)对壳聚糖-金纳米粒子(CS-AuNPs)过氧化物酶样活性的抑制,构建了一种新型、简单和灵敏的半胱氨酸传感器。CS-AuNPs具有过氧化物酶样活性,表现为在H 2 O 2存在下,能够使3,3′,5,5′-四甲基联苯胺(TMB)发生氧化...基于L-半胱氨酸(L-Cysteine)对壳聚糖-金纳米粒子(CS-AuNPs)过氧化物酶样活性的抑制,构建了一种新型、简单和灵敏的半胱氨酸传感器。CS-AuNPs具有过氧化物酶样活性,表现为在H 2 O 2存在下,能够使3,3′,5,5′-四甲基联苯胺(TMB)发生氧化生成蓝色产物。半胱氨酸能明显抑制其活性,加入半胱氨酸后,体系颜色变浅,在波长652 nm处吸收值降低。利用过氧化物酶样活性的降低,设计了一种灵敏度高、选择性好的检测半胱氨酸的比色传感器。结合紫外-可见吸收光谱,检测限低至0.4μmol/L,低于细胞中半胱氨酸的正常水平(30~200μmol/L)。讨论了半胱氨酸抑制催化活性的机理。该传感器具有无需修饰、检测步骤少、肉眼观察方便等优点,在分析和生物技术领域具有潜在的应用价值。展开更多
Highly stable dispersions of nanosized copper (Cu) particles with an average size of (2.6 ± 0.5) nm were synthesized by in situ reduction of Cu(II) to immobilize Cu nanoparticles on the amino-enriched surfa...Highly stable dispersions of nanosized copper (Cu) particles with an average size of (2.6 ± 0.5) nm were synthesized by in situ reduction of Cu(II) to immobilize Cu nanoparticles on the amino-enriched surface of chitosan (CTS). The synthetic process and stability of the L-ascorbic acid-stabilized Cu-CTS nanocomposites were investigated by X-ray photoelectron spectroscopy and Fourier transform Infrared spectroscopy. The antimicrobial efficiency and potency of the Cu-CTS nanocomposites were studied. The Cu-CTS nanocomposites were found to exhibit a broad antimicrobial spectrum and high antimicrobial activity against Gram-positive bacterial pathogen Staphylococcus aureus and fungal pathogen Monilia albican. The minimum inhibitory concentration of the Cu-CTS nanocomposites toward S. aureus was found to be 6.4 μg mL^-1, much lower than those reported in the literature. Furthermore, the Cu-CTS nanocomposites were stable and main- tained good disinfection potential even after 90-day shelf-time under ambient conditions.展开更多
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated....The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Zn(Ⅱ)>Cd(Ⅱ)>Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.展开更多
文摘基于L-半胱氨酸(L-Cysteine)对壳聚糖-金纳米粒子(CS-AuNPs)过氧化物酶样活性的抑制,构建了一种新型、简单和灵敏的半胱氨酸传感器。CS-AuNPs具有过氧化物酶样活性,表现为在H 2 O 2存在下,能够使3,3′,5,5′-四甲基联苯胺(TMB)发生氧化生成蓝色产物。半胱氨酸能明显抑制其活性,加入半胱氨酸后,体系颜色变浅,在波长652 nm处吸收值降低。利用过氧化物酶样活性的降低,设计了一种灵敏度高、选择性好的检测半胱氨酸的比色传感器。结合紫外-可见吸收光谱,检测限低至0.4μmol/L,低于细胞中半胱氨酸的正常水平(30~200μmol/L)。讨论了半胱氨酸抑制催化活性的机理。该传感器具有无需修饰、检测步骤少、肉眼观察方便等优点,在分析和生物技术领域具有潜在的应用价值。
基金partially supported by theNational Natural Science Foundation of China(21173047 and21073036)
文摘Highly stable dispersions of nanosized copper (Cu) particles with an average size of (2.6 ± 0.5) nm were synthesized by in situ reduction of Cu(II) to immobilize Cu nanoparticles on the amino-enriched surface of chitosan (CTS). The synthetic process and stability of the L-ascorbic acid-stabilized Cu-CTS nanocomposites were investigated by X-ray photoelectron spectroscopy and Fourier transform Infrared spectroscopy. The antimicrobial efficiency and potency of the Cu-CTS nanocomposites were studied. The Cu-CTS nanocomposites were found to exhibit a broad antimicrobial spectrum and high antimicrobial activity against Gram-positive bacterial pathogen Staphylococcus aureus and fungal pathogen Monilia albican. The minimum inhibitory concentration of the Cu-CTS nanocomposites toward S. aureus was found to be 6.4 μg mL^-1, much lower than those reported in the literature. Furthermore, the Cu-CTS nanocomposites were stable and main- tained good disinfection potential even after 90-day shelf-time under ambient conditions.
文摘The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Zn(Ⅱ)>Cd(Ⅱ)>Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.