Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanic...Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.展开更多
The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with thei...The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51871068, 51971071, 52011530025, and U21A2049)the National Key Research and Development Program of China (No. 2021YFE0103200)+1 种基金the Zhejiang Province Key Research and Development Program, China (No. 2021C01086)the Fundamental Research Funds for the Central Universities, China (No. 3072021CFT1010)。
文摘Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.
文摘The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.