Chemotherapy as an effective cancer treatment technique has been widely used in tumor therapy. However, it is still a challenge to overcome the serious side effects of chemotherapy, especially for its myelotoxicity. H...Chemotherapy as an effective cancer treatment technique has been widely used in tumor therapy. However, it is still a challenge to overcome the serious side effects of chemotherapy, especially for its myelotoxicity. Here we report a novel strategy using the water soluble gadofullerene nanocrystals(GFNCs) to protect against chemotherapy injury in hepatocarcinoma bearing mice, which was induced by the commonly chemotherapeutic agent cyclophosphamide(CTX).The GFNCs were revealed to specifically accumulate in the bone marrow after intravenously injecting to mice and they exhibited excellent radical scavenging function, resulting in a prominent increase of mice blood cells and pathological improvements of the primary organs in the GFNCs(15 mg kg-(-1))treated mice after the CTX(60 mg kg-(-1)) therapy. Moreover,the GFNCs maintained and even strengthened the antineoplastic activity of the CTX agent. Therefore, the GFNCs would be the promising chemoprotective agents in chemotherapy based on their high efficiency, low toxicity and metabolizable property.展开更多
基金financially supported by the National Natural Science Foundation of China(51472248,51372251 and 51502301)the National Major Scientific Instruments and Equipments Development Project(ZDYZ2015-2)the Key Research Program of the Chinese Academy of Sciences(QYZDJ-SSW-SLH025,KGZD-EWT02 and XDA09030302)
文摘Chemotherapy as an effective cancer treatment technique has been widely used in tumor therapy. However, it is still a challenge to overcome the serious side effects of chemotherapy, especially for its myelotoxicity. Here we report a novel strategy using the water soluble gadofullerene nanocrystals(GFNCs) to protect against chemotherapy injury in hepatocarcinoma bearing mice, which was induced by the commonly chemotherapeutic agent cyclophosphamide(CTX).The GFNCs were revealed to specifically accumulate in the bone marrow after intravenously injecting to mice and they exhibited excellent radical scavenging function, resulting in a prominent increase of mice blood cells and pathological improvements of the primary organs in the GFNCs(15 mg kg-(-1))treated mice after the CTX(60 mg kg-(-1)) therapy. Moreover,the GFNCs maintained and even strengthened the antineoplastic activity of the CTX agent. Therefore, the GFNCs would be the promising chemoprotective agents in chemotherapy based on their high efficiency, low toxicity and metabolizable property.