Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemic...Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.展开更多
A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flo...A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flow rates of 100 and 16sccm,respectively,with a total pressure of 5.0kPa. The surface morphology and the structure of the films were characterized by field emission scanning electron microscopy (SEM) and Raman scattering spectroscopy. Field emission properties of as-deposited film were measured in a vacuum room below 5 ×10^ 5 Pa. The experimental results show that the initial turn-on field is 0. 9V/μm; The current density is 4.0mA/cm2 and the emission sites are dense and uniform at an electric field of 3.7V/μm. These results indicate that such a mixture of amorphous carbon and carbon nanotubes films is a promising material for field emission applications.展开更多
We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion ba...We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of 〉2000 mA.h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of 〉98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.展开更多
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.
文摘A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flow rates of 100 and 16sccm,respectively,with a total pressure of 5.0kPa. The surface morphology and the structure of the films were characterized by field emission scanning electron microscopy (SEM) and Raman scattering spectroscopy. Field emission properties of as-deposited film were measured in a vacuum room below 5 ×10^ 5 Pa. The experimental results show that the initial turn-on field is 0. 9V/μm; The current density is 4.0mA/cm2 and the emission sites are dense and uniform at an electric field of 3.7V/μm. These results indicate that such a mixture of amorphous carbon and carbon nanotubes films is a promising material for field emission applications.
基金We acknowledge financial support from the National Science Foundation (CCF 0726815 and CCF 0702204).
文摘We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of 〉2000 mA.h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of 〉98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.