Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray dif...Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively.展开更多
TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were stu...TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive.展开更多
Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective facto...Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective factors for fabrication of nanocomposite coatings were fixed for better studying the effect of the average size of nanoparticulates.The effects of the different average size of nanometric particulates(ASNP)from submicron scale(less than 1μm)to nanometric scale(less than 10 nm)were studied.The nanostructures of surfaces were examined by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and atomic force microscopy(AFM).Corrosion rates of the coatings were determined using the Tafel polarization test.It is seen that decreasing the ASNP will lead to lower corrosion current densities;however,in some cases,pitting phenomena are observed.The roughness illustrates a minimum level while the distribution of nanometric particulates is more uniform by decreasing the ASNP.The effects of pulsed current on electrodeposition(frequency,duty cycle)and concentration of nanoparticulates in electrodeposition bath on trend of obtained curves have been discussed.Response surface methodology was applied for optimizing the effective operating conditions of coatings.The levels studied were frequency range between 1 000 and 9 000 Hz,duty cycle between 10%and 90%and concentration of nanoparticulates of 10-90 g/L.展开更多
A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing proc...A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of A1203 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, A12OJSiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed A1203/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the A1203/5%SIC nanocomposites by pressureless sintering and post HIP process.展开更多
Nano-AlN and submicron-Al_(2)O_(3) particles were simultaneously utilized in a 6061 Al matrix composite to improve the high-temperature strength.According to the SEM and TEM characterization,nano-AlN and submicron-Al_...Nano-AlN and submicron-Al_(2)O_(3) particles were simultaneously utilized in a 6061 Al matrix composite to improve the high-temperature strength.According to the SEM and TEM characterization,nano-AlN and submicron-Al_(2)O_(3) particles are uniformly distributed in the Al matrix.Brinell hardness results indicate that different from the traditional 6061 Al matrix alloy,the aging kinetics of the composite is obviously accelerated by the reinforcement particles.The T6-treated composite exhibits excellent tensile properties at both room temperature and elevated temperature.Especially at 350℃,the T6-treated composite not only has a high yield strength of 121 MPa and ultimate tensile strength of 128 MPa,but also exhibits a large elongation of 11.6%.Different strengthening mechanisms of nano-AlN and submicron-Al_(2)O_(3) particles were also discussed in detail.展开更多
Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was de...Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was decreased to 175℃ and 6.7,6.5 and 6.1 wt.%hydrogen could be released within 5,10 and 25 min at 300,275 and 250℃,respectively.Besides,the composite started to take up hydrogen at room temperature and absorbed 2.0 wt.%hydrogen within 30 min at low temperature of 50℃.The hydrogenation activation energy of MgH_(2) was reduced from(72.5±2.7)to(18.8±0.2)kJ/mol after doping with 10 wt.%nano-Mn.In addition,the MgH_(2)+10 wt.%nano-Mn composite exhibited superior cyclic property,maintaining 92%initial capacity after 20 cycles.展开更多
Phenomenon of localized surface plasmon excitation at nanostructured materials has attracted much attention in recent decades for their wide applications in single molecule detection,surface-enhanced Raman spectroscop...Phenomenon of localized surface plasmon excitation at nanostructured materials has attracted much attention in recent decades for their wide applications in single molecule detection,surface-enhanced Raman spectroscopy and nano-plasmonics.In addition to the excitation by external light field,an electron beam can also induce the local surface plasmon excitation.Nowadays,electron energy loss spectroscopy(EELS)technique has been increasingly employed in experiment to investigate the surface excitation characteristics of metallic nanoparticles.However,a present theoretical analysis tool for electromagnetic analysis based on the discrete dipole approximation(DDA)method can only treat the case of excitation by light field.In this work we extend the DDA method for the calculation of EELS spectrum for arbitary nanostructured materials.We have simulated EELS spectra for different incident locations of an electron beam on a single silver nanoparticle,the simulated results agree with an experimental measurement very well.The present method then provides a computation tool for study of the local surface plasmon excitation of metallic nanoparticles induced by an electron beam.展开更多
The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could inc...The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could increase the isotheraml aging(IA)and thermal cyclic(TC)lifetimes of Sn−0.5Ag−0.7Cu/Cu joint from 662 to 787 h,and from 1597 to 1824 cycles,respectively.Also,trace addition of Al_(2)O_(3) NPs could slow down the shear force reduction of solder joint during thermal services,which was attributed to the pinning effect of Al_(2)O_(3) NPs on hindering the growth of grains and interfacial intermetallic compounds(IMCs).Theoretically,the growth coefficients of interfacial IMCs in IA process were calculated to be decreased from 1.61×10^(−10 )to 0.79×10^(−10) cm^(2)/h in IA process,and from 0.92×10^(−10) to 0.53×10^(−10) cm^(2)/h in TC process.This indicated that trace addition of Al_(2)O_(3) NPs can improve both IA and TC reliabilities of Sn−0.5Ag−0.7Cu/Cu joint,and a little more obvious in IA reliability.展开更多
Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol f...Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol fuel for improving the current response.The PVC/Cu electrodes were characterized by thermal gravimetric analysis(TGA)for thermal stability of the electrode,X-ray diffraction(XRD)for identification of copper nanoparticles in the electrode,Fourier transform infrared spectroscopy(FTIR)to identify the interaction between PVC and Cu and scan electron microscopy(SEM)with EDAX for the morphology of the electrode.The electrocatalytic activity of the electrode was characterized by the cyclic voltammetry,linear sweep voltammetry,and chronoamperometry techniques.An increase in the electrode activity was observed with the increase of copper quantity from 0.18 g(PVC/Cu-0.18 g)to 0.24 g(PVC/Cu-0.24 g)and the maximum was found at 0.24 g of copper in the electrode.Also,it was observed that the electrode achieved the maximum catalytic current in 0.5 mol/L CH3OH+1 mol/L Na OH solution.FTIR identified that water molecules,C—H group,copper nanoparticle and its oxide were available in the electrode.SEM images with EDAX showed that copper particles were properly embedded in the polyvinylchloride matrix.展开更多
Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scann...Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scanning calorimetry (DSC),X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) were used toevaluate the structures and morphologies of samples. The results show that the calcination temperature has significant effect on thecrystallinity and morphologies. Pure LiNiVO4 flaky nanoparticles with a mean particle size around 20 nm can be readily prepared bycalcining the precursor in air at 500 °C for 2 h. As a cathode material for lithium-ion batteries, the porous LiNiVO4 powder exhibits agood structural reversibility.展开更多
It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the au...It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the authors studied sorption process of doxorubicine by silver nanocomposites and investigated chemical interaction between antibiotic and poly-N-vinyplyrrolidone with UV-VIS (ultraviolet visible) and FT-IR (Fourier transform infrared) spectroscopy. It is shown that formation of the nanoparticles doxorubicin complex mainly occurs in the 190-208 nm wavelengths on polymers 〉C=O functional groups. Also, the four main absorbing peaks of doxorubicin--234, 253, 288 and 495 nm undergo chemists shift (A2 = 12-15 nm). When increases to pH = 7-8, the size of Ag-doxorubicin particles decreases. It is determined that the 410 nm absorption peak of Ag nanoparticles undergo 409-418 nm interval and the 3,500, 1,600, 1,645 and 1,190 sm^-1 absorption lines of PVPr (polymer poly-N-vinylpyrrolidone) slightly altered.展开更多
To better understand the fusion mechanism of heated carbon black, heat treatment is conducted for carbon black produced by benzene pyrolysis. The effects of (a) heating time, (b) heating temperature and (c) heat...To better understand the fusion mechanism of heated carbon black, heat treatment is conducted for carbon black produced by benzene pyrolysis. The effects of (a) heating time, (b) heating temperature and (c) heating rate on the aggregate shape and mean primary particle diameter of the carbon black are investigated using TEM (transmission electron microscopy). The mean primary particle diameter does not change significantly when carbon black is heat treated. For short heating times and low heating temperatures, the aggregate shapes become simple when compared with those of non-heated carbon black, and shapes become complex with an increase in the heating time. Also, for low heating rates, the aggregate shapes become significantly simple when compared with those of non-heated carbon black. The results of this study suggest that sintering between primary particles is promoted under relatively low heating temperatures, and Ostwald ripening among aggregates is promoted under relatively high heating temperatures.展开更多
Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spec...Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spectroscopy(UV–Vis), Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction(XRD), Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). Ni Gs were used as adsorbent for the removal of dyes such as crystal violet(CV), eosin Y(EY), orange II(OR) and anionic pollutant nitrate(NO3-), sulfate(SO42-) from aqueous solution. Adsorption capacity of Ni Gs was examined in batch modes at different p H, contact time, Ni G dosage, initial dye and pollutant concentration. The adsorption process was p H dependent and the adsorption capacity increased with increase in contact time and with that of Ni G dosage, whereas the adsorption capacity decreased at higher concentrations of dyes and pollutants. Maximum percentage removal of dyes and pollutants were observed at 40, 20,30, 10 and 10 mg·L-1initial concentration of CV, EY, OR, NO3-and SO42-respectively. The maximum adsorption capacities in Langmuir isotherm were found to be 0.454, 0.615, 0.273, 0.795 and 0.645 mg·g-1at p H 8, 3, 3, 7and 7 for CV, EY, OR, NO3-and SO42-respectively. The higher coef ficients of correlation in Langmuir isotherm suggested monolayer adsorption. The mean energies(E), 2.23, 3.53, 2.50, 5.00 and 3.16 k J·mol-1for CV, EY, OR, NO3-and SO42-respectively, calculated from the Dubinin–Radushkevich isotherm showed physical adsorption of adsorbate onto Ni Gs. Adsorption kinetics data was better fitted to pseudo-second-order kinetics with R2 N 0.870 for all dyes and pollutants. Ni Gs were found to be an effective adsorbent for the removal of dyes and pollutants from aqueous solution and can be applied to treat textile and tannery ef fluents.展开更多
Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites ...Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.展开更多
基金supported by the National Natural Science Foundation of China (21477146,21303263)the National High Technology Research and Development Program of China (863 Program,2015AA034603)+2 种基金Beijing Nova Program (Z141109001814072)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130007120011)the Science Foundation of China University of Petroleum-Beijing (YJRC-2013-13,2462013BJRC003)~~
文摘Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively.
基金Project(2020RC2002) supported by Science and Technology Innovation Program of Hunan Province,ChinaProject(2021JJ40774) supported by Natural Science Foundation of Hunan Province,China+2 种基金Project(20A430007) supported by Key Scientific Research Projects of Colleges and Universities in Henan Province,ChinaProject(212102210032)supported by the Key Scientific and Technological Projects in Henan Province,ChinaProject(HEU10202117)supported by the Key Laboratory of Superlight Materials Surface Technology,Ministry of Education,China。
文摘TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive.
文摘Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective factors for fabrication of nanocomposite coatings were fixed for better studying the effect of the average size of nanoparticulates.The effects of the different average size of nanometric particulates(ASNP)from submicron scale(less than 1μm)to nanometric scale(less than 10 nm)were studied.The nanostructures of surfaces were examined by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and atomic force microscopy(AFM).Corrosion rates of the coatings were determined using the Tafel polarization test.It is seen that decreasing the ASNP will lead to lower corrosion current densities;however,in some cases,pitting phenomena are observed.The roughness illustrates a minimum level while the distribution of nanometric particulates is more uniform by decreasing the ASNP.The effects of pulsed current on electrodeposition(frequency,duty cycle)and concentration of nanoparticulates in electrodeposition bath on trend of obtained curves have been discussed.Response surface methodology was applied for optimizing the effective operating conditions of coatings.The levels studied were frequency range between 1 000 and 9 000 Hz,duty cycle between 10%and 90%and concentration of nanoparticulates of 10-90 g/L.
基金Project supported by Pusan National University Research GrantProject(2010-0008-276) supported by National Core Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of A1203 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, A12OJSiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed A1203/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the A1203/5%SIC nanocomposites by pressureless sintering and post HIP process.
基金supported by the Key Program of National Natural Science Foundation of China(No.51731007)the National Natural Science Foundation of China(No.52071179)the Fundamental Research Funds for the Central Universities(No.30920021160).
文摘Nano-AlN and submicron-Al_(2)O_(3) particles were simultaneously utilized in a 6061 Al matrix composite to improve the high-temperature strength.According to the SEM and TEM characterization,nano-AlN and submicron-Al_(2)O_(3) particles are uniformly distributed in the Al matrix.Brinell hardness results indicate that different from the traditional 6061 Al matrix alloy,the aging kinetics of the composite is obviously accelerated by the reinforcement particles.The T6-treated composite exhibits excellent tensile properties at both room temperature and elevated temperature.Especially at 350℃,the T6-treated composite not only has a high yield strength of 121 MPa and ultimate tensile strength of 128 MPa,but also exhibits a large elongation of 11.6%.Different strengthening mechanisms of nano-AlN and submicron-Al_(2)O_(3) particles were also discussed in detail.
基金financial supports from the National Natural Science Foundation of China (No. 51801078)the Natural Science Foundation of Jiangsu Province, China (No. BK20180986)。
文摘Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was decreased to 175℃ and 6.7,6.5 and 6.1 wt.%hydrogen could be released within 5,10 and 25 min at 300,275 and 250℃,respectively.Besides,the composite started to take up hydrogen at room temperature and absorbed 2.0 wt.%hydrogen within 30 min at low temperature of 50℃.The hydrogenation activation energy of MgH_(2) was reduced from(72.5±2.7)to(18.8±0.2)kJ/mol after doping with 10 wt.%nano-Mn.In addition,the MgH_(2)+10 wt.%nano-Mn composite exhibited superior cyclic property,maintaining 92%initial capacity after 20 cycles.
基金supported by the National Natural Science Foundation of China (No.11574289)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(2nd phase) (No.U1501501)+1 种基金"111" Project by Education Ministry of China"Materials research by Information Integration" Initiative (MI2I) Project of the Support Program for Starting Up Innovation Hub from Japan Science and Technology Agency (JST)
文摘Phenomenon of localized surface plasmon excitation at nanostructured materials has attracted much attention in recent decades for their wide applications in single molecule detection,surface-enhanced Raman spectroscopy and nano-plasmonics.In addition to the excitation by external light field,an electron beam can also induce the local surface plasmon excitation.Nowadays,electron energy loss spectroscopy(EELS)technique has been increasingly employed in experiment to investigate the surface excitation characteristics of metallic nanoparticles.However,a present theoretical analysis tool for electromagnetic analysis based on the discrete dipole approximation(DDA)method can only treat the case of excitation by light field.In this work we extend the DDA method for the calculation of EELS spectrum for arbitary nanostructured materials.We have simulated EELS spectra for different incident locations of an electron beam on a single silver nanoparticle,the simulated results agree with an experimental measurement very well.The present method then provides a computation tool for study of the local surface plasmon excitation of metallic nanoparticles induced by an electron beam.
基金supported by the National Natural Science Foundation of China(Nos.52105369,61974070)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB460008)+1 种基金Natural Science Foundation of Jiangsu Province,China(No.BK20200746)NUPTSF(No.NY220077).
文摘The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could increase the isotheraml aging(IA)and thermal cyclic(TC)lifetimes of Sn−0.5Ag−0.7Cu/Cu joint from 662 to 787 h,and from 1597 to 1824 cycles,respectively.Also,trace addition of Al_(2)O_(3) NPs could slow down the shear force reduction of solder joint during thermal services,which was attributed to the pinning effect of Al_(2)O_(3) NPs on hindering the growth of grains and interfacial intermetallic compounds(IMCs).Theoretically,the growth coefficients of interfacial IMCs in IA process were calculated to be decreased from 1.61×10^(−10 )to 0.79×10^(−10) cm^(2)/h in IA process,and from 0.92×10^(−10) to 0.53×10^(−10) cm^(2)/h in TC process.This indicated that trace addition of Al_(2)O_(3) NPs can improve both IA and TC reliabilities of Sn−0.5Ag−0.7Cu/Cu joint,and a little more obvious in IA reliability.
文摘Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol fuel for improving the current response.The PVC/Cu electrodes were characterized by thermal gravimetric analysis(TGA)for thermal stability of the electrode,X-ray diffraction(XRD)for identification of copper nanoparticles in the electrode,Fourier transform infrared spectroscopy(FTIR)to identify the interaction between PVC and Cu and scan electron microscopy(SEM)with EDAX for the morphology of the electrode.The electrocatalytic activity of the electrode was characterized by the cyclic voltammetry,linear sweep voltammetry,and chronoamperometry techniques.An increase in the electrode activity was observed with the increase of copper quantity from 0.18 g(PVC/Cu-0.18 g)to 0.24 g(PVC/Cu-0.24 g)and the maximum was found at 0.24 g of copper in the electrode.Also,it was observed that the electrode achieved the maximum catalytic current in 0.5 mol/L CH3OH+1 mol/L Na OH solution.FTIR identified that water molecules,C—H group,copper nanoparticle and its oxide were available in the electrode.SEM images with EDAX showed that copper particles were properly embedded in the polyvinylchloride matrix.
文摘Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scanning calorimetry (DSC),X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) were used toevaluate the structures and morphologies of samples. The results show that the calcination temperature has significant effect on thecrystallinity and morphologies. Pure LiNiVO4 flaky nanoparticles with a mean particle size around 20 nm can be readily prepared bycalcining the precursor in air at 500 °C for 2 h. As a cathode material for lithium-ion batteries, the porous LiNiVO4 powder exhibits agood structural reversibility.
文摘It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the authors studied sorption process of doxorubicine by silver nanocomposites and investigated chemical interaction between antibiotic and poly-N-vinyplyrrolidone with UV-VIS (ultraviolet visible) and FT-IR (Fourier transform infrared) spectroscopy. It is shown that formation of the nanoparticles doxorubicin complex mainly occurs in the 190-208 nm wavelengths on polymers 〉C=O functional groups. Also, the four main absorbing peaks of doxorubicin--234, 253, 288 and 495 nm undergo chemists shift (A2 = 12-15 nm). When increases to pH = 7-8, the size of Ag-doxorubicin particles decreases. It is determined that the 410 nm absorption peak of Ag nanoparticles undergo 409-418 nm interval and the 3,500, 1,600, 1,645 and 1,190 sm^-1 absorption lines of PVPr (polymer poly-N-vinylpyrrolidone) slightly altered.
文摘To better understand the fusion mechanism of heated carbon black, heat treatment is conducted for carbon black produced by benzene pyrolysis. The effects of (a) heating time, (b) heating temperature and (c) heating rate on the aggregate shape and mean primary particle diameter of the carbon black are investigated using TEM (transmission electron microscopy). The mean primary particle diameter does not change significantly when carbon black is heat treated. For short heating times and low heating temperatures, the aggregate shapes become simple when compared with those of non-heated carbon black, and shapes become complex with an increase in the heating time. Also, for low heating rates, the aggregate shapes become significantly simple when compared with those of non-heated carbon black. The results of this study suggest that sintering between primary particles is promoted under relatively low heating temperatures, and Ostwald ripening among aggregates is promoted under relatively high heating temperatures.
文摘Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spectroscopy(UV–Vis), Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction(XRD), Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). Ni Gs were used as adsorbent for the removal of dyes such as crystal violet(CV), eosin Y(EY), orange II(OR) and anionic pollutant nitrate(NO3-), sulfate(SO42-) from aqueous solution. Adsorption capacity of Ni Gs was examined in batch modes at different p H, contact time, Ni G dosage, initial dye and pollutant concentration. The adsorption process was p H dependent and the adsorption capacity increased with increase in contact time and with that of Ni G dosage, whereas the adsorption capacity decreased at higher concentrations of dyes and pollutants. Maximum percentage removal of dyes and pollutants were observed at 40, 20,30, 10 and 10 mg·L-1initial concentration of CV, EY, OR, NO3-and SO42-respectively. The maximum adsorption capacities in Langmuir isotherm were found to be 0.454, 0.615, 0.273, 0.795 and 0.645 mg·g-1at p H 8, 3, 3, 7and 7 for CV, EY, OR, NO3-and SO42-respectively. The higher coef ficients of correlation in Langmuir isotherm suggested monolayer adsorption. The mean energies(E), 2.23, 3.53, 2.50, 5.00 and 3.16 k J·mol-1for CV, EY, OR, NO3-and SO42-respectively, calculated from the Dubinin–Radushkevich isotherm showed physical adsorption of adsorbate onto Ni Gs. Adsorption kinetics data was better fitted to pseudo-second-order kinetics with R2 N 0.870 for all dyes and pollutants. Ni Gs were found to be an effective adsorbent for the removal of dyes and pollutants from aqueous solution and can be applied to treat textile and tannery ef fluents.
基金Project(RP021-2012C)supported by University of Malaya under the UMRG Fund,Malaysia
文摘Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.