文章研究了在有机溶剂(如乙醇)中,通过溶剂蒸发制备疏水性药物纳米颗粒的方法及制备的纳米材料。以具有生物相容性的支化聚(乙二醇)-b-(N-异丙基丙烯酰胺)聚合物纳米为支架,装载不同疏水药物,经过溶剂蒸发,得到稳定的纳米药物,同时能很...文章研究了在有机溶剂(如乙醇)中,通过溶剂蒸发制备疏水性药物纳米颗粒的方法及制备的纳米材料。以具有生物相容性的支化聚(乙二醇)-b-(N-异丙基丙烯酰胺)聚合物纳米为支架,装载不同疏水药物,经过溶剂蒸发,得到稳定的纳米药物,同时能很方便地溶解在水中得到水性药物纳米颗粒分散体。研究表明:疏水性药物纳米颗粒中,酮洛芬药物纳米颗粒(Dh≈200nm),可以在溶液中稳定保存9个月;当药物与聚合物质量比为0.33∶1时产率可达96%,质量比为1∶1时产率可达到80%。采用透射电子显微镜(transmission electron microscope,TEM)、动态光散射仪(dynamic light scattering,DLS)表征了药物纳米的尺度和结构。展开更多
Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, an...Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.展开更多
To review the latest research development of the solid lipid nanoparticles(SLN) according to the recent relevant literatures.Each preparations of the SLN have advantages and disadvantages.Among the total preparations ...To review the latest research development of the solid lipid nanoparticles(SLN) according to the recent relevant literatures.Each preparations of the SLN have advantages and disadvantages.Among the total preparations of the SLN.the high pressure homogenization(HPH) and the microemulsion tech- nique are to praise highly.The drug incorporation and release profiles could be modified as adjustment of production parameters.The SLNis an excellent drug delivery system and has broad prospects in the phar- maceutical field.展开更多
Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of t...Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention effect and a conjugated specific ligand or through the effects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxicity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system will be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.展开更多
It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the au...It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the authors studied sorption process of doxorubicine by silver nanocomposites and investigated chemical interaction between antibiotic and poly-N-vinyplyrrolidone with UV-VIS (ultraviolet visible) and FT-IR (Fourier transform infrared) spectroscopy. It is shown that formation of the nanoparticles doxorubicin complex mainly occurs in the 190-208 nm wavelengths on polymers 〉C=O functional groups. Also, the four main absorbing peaks of doxorubicin--234, 253, 288 and 495 nm undergo chemists shift (A2 = 12-15 nm). When increases to pH = 7-8, the size of Ag-doxorubicin particles decreases. It is determined that the 410 nm absorption peak of Ag nanoparticles undergo 409-418 nm interval and the 3,500, 1,600, 1,645 and 1,190 sm^-1 absorption lines of PVPr (polymer poly-N-vinylpyrrolidone) slightly altered.展开更多
The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and thera...The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and therapy.Many novel NPs have been synthesized and used to reduce drug toxicity,improve bio-availability,prolong circulation time,control drug release,and actively target to desired cells or tissues.However,clinical translation of NPs with the goal of treating particularly challenging diseases,such as cancer,will require a thorough understanding of how the NP properties influence their fate in biological systems,especially in vivo.Many efforts have been paid to studying the interactions and mechanisms of NPs and cells.Unless deliberately designed,the NPs in contact with biological fluids are rapidly covered by a selected group of biomolecules especially proteins to form a corona that interacts with biological systems.In this view,the recent development of NPs in drug delivery and the interactions of NPs with cells and proteins are summarized.By understanding the protein-NP interactions,some guidelines for safety design of NPs,challenges and future perspectives are discussed.展开更多
The chemical structure of end groups influenced the phase transition temperature of thermoresponsive polymers. We demonstrated a strategy for the preparation of the pH/thermo-responsive polymeric nanoparticles via sub...The chemical structure of end groups influenced the phase transition temperature of thermoresponsive polymers. We demonstrated a strategy for the preparation of the pH/thermo-responsive polymeric nanoparticles via subtle modification of end groups of thermoresponsive polymer segments with a carboxyl group and revealed its potential application for enhanced intracellular drug delivery. By developing a polymeric nanoparticle composed of poly(aliphatic ester) as the inner core and thermoresponsive polyphosphoester as the outer shell, we showed that end groups of thermoresponsive polyphosphoester segments modified by carboxyl groups exhibited a pH/thermo-responsive behavior due to the hydrophilic to hydrophobic transitions of the end groups in response to the pH. Moreover, by encapsulating doxorubicin into the hydrophobic core of such pH/thermo-responsive polymer nanoparticles, their intracellular delivery and cytotoxicity to wild-type and drug-resistant tumor cells were significantly enhanced through the phase-transition-dependent drug release that was triggered by endosomal/lysosomal pH. This novel strategy and the multi-responsive polymer nanoparticles achieved by the subtle chain-terminal modification of thermoresponsive polymers provide a smart platform for biomedical applications.展开更多
Topical formulations, commonly applied for treatment of anterior eye diseases, require frequent administration due to rapid clearance from the ocular surface, typically through the lacrimal drainage system or through ...Topical formulations, commonly applied for treatment of anterior eye diseases, require frequent administration due to rapid clearance from the ocular surface, typically through the lacrimal drainage system or through over-spillage onto the lids. We report on a mucoadhesive nanoparticle drug delivery system that may be used to prolong the precorneal residence time of encapsulated drugs. The nanoparticles were formed from self-assembly of block copolymers composed of poly(D, L-lactide) and Dextran. The enhanced mucoadhesion properties were achieved by surface functionalizing the nanoparticles with phenylboronic acid. The nanoparticles encapsulated up to 12 wt.% of Cyclosporine A (CycA) and sustained the release for up to five days at a clinically relevant dose, which led us to explore the therapeutic efficacy of the formulation with reduced administration frequency. By administering CycA-loaded nanoparticles to dry eye-induced mice once a week, inflammatory infiltrates were eliminated and the ocular surface completely recovered. The same once a week dosage of the nanoparticles also showed no signs of physical irritation or inflammatory responses in acute (1 week) and chronic (12 weeks) studies in healthy rabbit eyes. These findings indicate that the nanoparticles may significantly reduce the frequency of administration for effective treatment of anterior eye diseases without causing ocular irritation.展开更多
Magnetic nanoparticles have emerged as a powerful tool for magnetic resonance imaging, biodetection, drug delivery, and hyperthermia. This review focuses on the biological detection of magnetic nanoparticles as well a...Magnetic nanoparticles have emerged as a powerful tool for magnetic resonance imaging, biodetection, drug delivery, and hyperthermia. This review focuses on the biological detection of magnetic nanoparticles as well as their physicochemical properties. Substantial progress in the sensitivity of detection has been made by developing variety of methods. Five applications of magnetic nanoparticles in biological detection are discussed in this review: magnetic separation, magnetic sensing, magnetic manipulation, magnetic catalysis, and signal enhancer for surface plasmon resonance(SPR). Finally, some future trends and perspectives in these research areas are outlined.展开更多
Blood flow model is recycled to study the influence of magnetic field and nanoparticles in tapered stenosed arteries. The metallic nanoparticles for the blood flow with water as base fluid are not explored so far. The...Blood flow model is recycled to study the influence of magnetic field and nanoparticles in tapered stenosed arteries. The metallic nanoparticles for the blood flow with water as base fluid are not explored so far. The representation for the blood flow is through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the deve- loping stenosis is another important feature of our analysis. Exact solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. conver- ging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest for pure water and Copper water (Cu-water).展开更多
Pancreatic cancer is a devastating malignant disease with 5-year survival rate less than 8%.The impenetrable desmoplastic stroma of pancreatic tissue and serious side-effects of existing drugs hinder the effective tre...Pancreatic cancer is a devastating malignant disease with 5-year survival rate less than 8%.The impenetrable desmoplastic stroma of pancreatic tissue and serious side-effects of existing drugs hinder the effective treatment for pancreatic carcinoma.Thus,it is imperative to exploit much more safe and efficient methods to prolong the survival of pancreatic cancer patients.In this study,we explored a superior anti-pancreatic cancer strategy based on gadofullerene nanoparticles(GFNPs)using an orthotopic human pancreatic carcinoma(PANC-1)tumor model.It was demonstrated that GFNPs could efficiently suppress orthotopic pancreatic cancer in a dose manner,and significantly extend the survival rate of tumor-bearing mice.Of note,the proteomic profiling of tumor tissues revealed that GFNPs ameliorated the coagulation cascade dysfunction and downregulated the thrombin expression in pancreatic tumor tissues.The regulation of abnormal thrombin by GFNPs was validated in vitro and in vivo.More importantly,GFNPs suppressed orthotopic pancreatic cancer with negligible adverse effects,superior to the widely recognized clinical antipancreatic cancer drug,gemcitabine.Together,this study provides a promising therapeutic for intractable pancreatic cancer as well as a potential to alleviate the cancer-associated thromboembolic diseases.展开更多
There has been unprecedented progress in the development of biomedical nanotechnology and nanoma- terials over the past few decades, and nanoparticle-based drug delivery systems (DDSs) have great potential for clin-...There has been unprecedented progress in the development of biomedical nanotechnology and nanoma- terials over the past few decades, and nanoparticle-based drug delivery systems (DDSs) have great potential for clin- ical applications. Among these, magnetic drug delivery systems (MDDSs) based on magnetic nanoparticles (MNPs) are attracting increasing attention owing to their favor- able biocompatibility and excellent multifunctional loading capability. MDDSs primarily have a solid core of super paramagnetic maghemite (y-Fe^03) or magnetite (Fe304) nanoparticles ranging in size from 10 to 100nm. Their surface can be functionalized by organic and/or inorganic modification. Further conjugation with targeting ligands, drug loading, and MNP assembly can provide complex magnetic delivery systems with improved targeting efficacy and reduced toxicity. Owing to their sensitive response to external magnetic fields, MNPs and their assemblies have been developed as novel smart delivery systems. In this review, we first summarize the basic physicochemical and magnetic properties of desirable MDDSs that fulfill the requirements for specific clinical applications. Secondly, we discuss the surface modifications and functionalization issues that arise when designing elaborate MDDSs for future clinical uses. Finally, we highlight recent progress in the design and fabrication of MNPs, magnetic assemblies, and magnetic microbnbbles and liposomes as MDDSs for cancer diagnosis and therapy. Recently, researchers have focused on enhanced targeting efficacy and theranostics by applying step-by-step sequential treatment, and by magnetically mod- ulating dosing regimens, which are the current challenges for clinical applications.展开更多
文摘文章研究了在有机溶剂(如乙醇)中,通过溶剂蒸发制备疏水性药物纳米颗粒的方法及制备的纳米材料。以具有生物相容性的支化聚(乙二醇)-b-(N-异丙基丙烯酰胺)聚合物纳米为支架,装载不同疏水药物,经过溶剂蒸发,得到稳定的纳米药物,同时能很方便地溶解在水中得到水性药物纳米颗粒分散体。研究表明:疏水性药物纳米颗粒中,酮洛芬药物纳米颗粒(Dh≈200nm),可以在溶液中稳定保存9个月;当药物与聚合物质量比为0.33∶1时产率可达96%,质量比为1∶1时产率可达到80%。采用透射电子显微镜(transmission electron microscope,TEM)、动态光散射仪(dynamic light scattering,DLS)表征了药物纳米的尺度和结构。
文摘Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.
文摘To review the latest research development of the solid lipid nanoparticles(SLN) according to the recent relevant literatures.Each preparations of the SLN have advantages and disadvantages.Among the total preparations of the SLN.the high pressure homogenization(HPH) and the microemulsion tech- nique are to praise highly.The drug incorporation and release profiles could be modified as adjustment of production parameters.The SLNis an excellent drug delivery system and has broad prospects in the phar- maceutical field.
基金Supported by a grant from the foundation of Guangzhou Municipal Key Project for Special Scientific Plan(No.2008A1-E4101)
文摘Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention effect and a conjugated specific ligand or through the effects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxicity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system will be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.
文摘It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the authors studied sorption process of doxorubicine by silver nanocomposites and investigated chemical interaction between antibiotic and poly-N-vinyplyrrolidone with UV-VIS (ultraviolet visible) and FT-IR (Fourier transform infrared) spectroscopy. It is shown that formation of the nanoparticles doxorubicin complex mainly occurs in the 190-208 nm wavelengths on polymers 〉C=O functional groups. Also, the four main absorbing peaks of doxorubicin--234, 253, 288 and 495 nm undergo chemists shift (A2 = 12-15 nm). When increases to pH = 7-8, the size of Ag-doxorubicin particles decreases. It is determined that the 410 nm absorption peak of Ag nanoparticles undergo 409-418 nm interval and the 3,500, 1,600, 1,645 and 1,190 sm^-1 absorption lines of PVPr (polymer poly-N-vinylpyrrolidone) slightly altered.
基金financially supported by the National Natural Science Foundation of China(51120135001)the National Basic Research Program of China(2011CB606203)+1 种基金Ph.D.Programs Foundation of Ministry of Education of China(20110101130005)Open Project of State Key Laboratory of Supramolecular Structure and Materials(sklssm201303)
文摘The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and therapy.Many novel NPs have been synthesized and used to reduce drug toxicity,improve bio-availability,prolong circulation time,control drug release,and actively target to desired cells or tissues.However,clinical translation of NPs with the goal of treating particularly challenging diseases,such as cancer,will require a thorough understanding of how the NP properties influence their fate in biological systems,especially in vivo.Many efforts have been paid to studying the interactions and mechanisms of NPs and cells.Unless deliberately designed,the NPs in contact with biological fluids are rapidly covered by a selected group of biomolecules especially proteins to form a corona that interacts with biological systems.In this view,the recent development of NPs in drug delivery and the interactions of NPs with cells and proteins are summarized.By understanding the protein-NP interactions,some guidelines for safety design of NPs,challenges and future perspectives are discussed.
基金supported by the Ministry of Science and Technology of China(2010CB934001)the National Natural Science Foundation of China(51125012,51203145)
文摘The chemical structure of end groups influenced the phase transition temperature of thermoresponsive polymers. We demonstrated a strategy for the preparation of the pH/thermo-responsive polymeric nanoparticles via subtle modification of end groups of thermoresponsive polymer segments with a carboxyl group and revealed its potential application for enhanced intracellular drug delivery. By developing a polymeric nanoparticle composed of poly(aliphatic ester) as the inner core and thermoresponsive polyphosphoester as the outer shell, we showed that end groups of thermoresponsive polyphosphoester segments modified by carboxyl groups exhibited a pH/thermo-responsive behavior due to the hydrophilic to hydrophobic transitions of the end groups in response to the pH. Moreover, by encapsulating doxorubicin into the hydrophobic core of such pH/thermo-responsive polymer nanoparticles, their intracellular delivery and cytotoxicity to wild-type and drug-resistant tumor cells were significantly enhanced through the phase-transition-dependent drug release that was triggered by endosomal/lysosomal pH. This novel strategy and the multi-responsive polymer nanoparticles achieved by the subtle chain-terminal modification of thermoresponsive polymers provide a smart platform for biomedical applications.
文摘Topical formulations, commonly applied for treatment of anterior eye diseases, require frequent administration due to rapid clearance from the ocular surface, typically through the lacrimal drainage system or through over-spillage onto the lids. We report on a mucoadhesive nanoparticle drug delivery system that may be used to prolong the precorneal residence time of encapsulated drugs. The nanoparticles were formed from self-assembly of block copolymers composed of poly(D, L-lactide) and Dextran. The enhanced mucoadhesion properties were achieved by surface functionalizing the nanoparticles with phenylboronic acid. The nanoparticles encapsulated up to 12 wt.% of Cyclosporine A (CycA) and sustained the release for up to five days at a clinically relevant dose, which led us to explore the therapeutic efficacy of the formulation with reduced administration frequency. By administering CycA-loaded nanoparticles to dry eye-induced mice once a week, inflammatory infiltrates were eliminated and the ocular surface completely recovered. The same once a week dosage of the nanoparticles also showed no signs of physical irritation or inflammatory responses in acute (1 week) and chronic (12 weeks) studies in healthy rabbit eyes. These findings indicate that the nanoparticles may significantly reduce the frequency of administration for effective treatment of anterior eye diseases without causing ocular irritation.
基金supported by the National Natural Science Foundation of China(2014M561073,51173139)the Program for Young Outstanding Scientists of Institute of Chemistry,and the Chinese Academy of Science(Y41Z011)
文摘Magnetic nanoparticles have emerged as a powerful tool for magnetic resonance imaging, biodetection, drug delivery, and hyperthermia. This review focuses on the biological detection of magnetic nanoparticles as well as their physicochemical properties. Substantial progress in the sensitivity of detection has been made by developing variety of methods. Five applications of magnetic nanoparticles in biological detection are discussed in this review: magnetic separation, magnetic sensing, magnetic manipulation, magnetic catalysis, and signal enhancer for surface plasmon resonance(SPR). Finally, some future trends and perspectives in these research areas are outlined.
文摘Blood flow model is recycled to study the influence of magnetic field and nanoparticles in tapered stenosed arteries. The metallic nanoparticles for the blood flow with water as base fluid are not explored so far. The representation for the blood flow is through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the deve- loping stenosis is another important feature of our analysis. Exact solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. conver- ging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest for pure water and Copper water (Cu-water).
基金supported by the National Major Scientific Instruments and Equipments Development Project(ZDYZ2015-2)the Key Research Program of the Chinese Academy of Sciences(QYZDJSSW-SLH025)the National Natural Science Foundation of China(51902313)。
文摘Pancreatic cancer is a devastating malignant disease with 5-year survival rate less than 8%.The impenetrable desmoplastic stroma of pancreatic tissue and serious side-effects of existing drugs hinder the effective treatment for pancreatic carcinoma.Thus,it is imperative to exploit much more safe and efficient methods to prolong the survival of pancreatic cancer patients.In this study,we explored a superior anti-pancreatic cancer strategy based on gadofullerene nanoparticles(GFNPs)using an orthotopic human pancreatic carcinoma(PANC-1)tumor model.It was demonstrated that GFNPs could efficiently suppress orthotopic pancreatic cancer in a dose manner,and significantly extend the survival rate of tumor-bearing mice.Of note,the proteomic profiling of tumor tissues revealed that GFNPs ameliorated the coagulation cascade dysfunction and downregulated the thrombin expression in pancreatic tumor tissues.The regulation of abnormal thrombin by GFNPs was validated in vitro and in vivo.More importantly,GFNPs suppressed orthotopic pancreatic cancer with negligible adverse effects,superior to the widely recognized clinical antipancreatic cancer drug,gemcitabine.Together,this study provides a promising therapeutic for intractable pancreatic cancer as well as a potential to alleviate the cancer-associated thromboembolic diseases.
基金financially funded by the National Natural Science Foundation of China (NSFC, 31370019, 61420106012)the project of National Key Basic Research Program of China (2013CB733804)+1 种基金The funding partially comes from the Fundamental Research Funds for the Central Universities (2242016K41072)Zhong Ying Young Scholar of Southeast University as well as the support fromthe Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘There has been unprecedented progress in the development of biomedical nanotechnology and nanoma- terials over the past few decades, and nanoparticle-based drug delivery systems (DDSs) have great potential for clin- ical applications. Among these, magnetic drug delivery systems (MDDSs) based on magnetic nanoparticles (MNPs) are attracting increasing attention owing to their favor- able biocompatibility and excellent multifunctional loading capability. MDDSs primarily have a solid core of super paramagnetic maghemite (y-Fe^03) or magnetite (Fe304) nanoparticles ranging in size from 10 to 100nm. Their surface can be functionalized by organic and/or inorganic modification. Further conjugation with targeting ligands, drug loading, and MNP assembly can provide complex magnetic delivery systems with improved targeting efficacy and reduced toxicity. Owing to their sensitive response to external magnetic fields, MNPs and their assemblies have been developed as novel smart delivery systems. In this review, we first summarize the basic physicochemical and magnetic properties of desirable MDDSs that fulfill the requirements for specific clinical applications. Secondly, we discuss the surface modifications and functionalization issues that arise when designing elaborate MDDSs for future clinical uses. Finally, we highlight recent progress in the design and fabrication of MNPs, magnetic assemblies, and magnetic microbnbbles and liposomes as MDDSs for cancer diagnosis and therapy. Recently, researchers have focused on enhanced targeting efficacy and theranostics by applying step-by-step sequential treatment, and by magnetically mod- ulating dosing regimens, which are the current challenges for clinical applications.