期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
焙烧温度对纳米CeO_2性能的影响
1
作者 谢红梅 李永强 +5 位作者 李珏旋 张维熙 赵聪 焦昭杰 周桂林 张贤明 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期128-133,共6页
采用水热法制备纳米CeO_2催化剂,以酯类含氧挥发性有机化合物(OVOCs)催化燃烧反应为探针反应,结合XRD、O_2-TPD和H2-TPR表征,考察了焙烧温度对纳米CeO_2催化剂性能的影响.研究结果表明,CeO_2-500催化剂具有明显优于CeO_2-450和CeO_2-55... 采用水热法制备纳米CeO_2催化剂,以酯类含氧挥发性有机化合物(OVOCs)催化燃烧反应为探针反应,结合XRD、O_2-TPD和H2-TPR表征,考察了焙烧温度对纳米CeO_2催化剂性能的影响.研究结果表明,CeO_2-500催化剂具有明显优于CeO_2-450和CeO_2-550催化剂的乙酸乙酯催化燃烧活性,在反应温度为195℃时,乙酸乙酯的转化率高达95.7%.纳米CeO_2催化剂的乙酸乙酯催化燃烧活性与其氧脱附性能和可还原性能具有正相关性,其催化燃烧活性从大到小的顺序为:CeO_2-500,CeO_2-550,CeO_2-450,即CeO_2-500催化剂具有优越的OVOCs催化燃烧活性. 展开更多
关键词 纳米ceo2催化剂 焙烧温度 含氧挥发性有机化物 乙酸乙酯 催化燃烧
下载PDF
Understanding morphology-dependent Cu Ox-CeO2 interactions from the very beginning 被引量:5
2
作者 Yuxian Gao Zhenhua Zhang +1 位作者 Zhaorui Li Weixin Huang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第6期1006-1016,共11页
Elucidation of the CuOx-CeO2 interactions is of great interest and importance in understanding complex CuOx-CeO2 interfacial catalysis in various reactions. In the present work, we have investigated structures and cat... Elucidation of the CuOx-CeO2 interactions is of great interest and importance in understanding complex CuOx-CeO2 interfacial catalysis in various reactions. In the present work, we have investigated structures and catalytic activity in CO oxidation of CuOx species on CeO2 rods, cubes and polyhedra predominantly exposing {110}+{100}, {100} and {111} facets by the incipient wetness impregnation method with the lowest Cu loading of 0.025%. The structural evolution of CuOx species was found to depend on both the Cu loading and the CeO2 morphology. As the Cu loading increases, CuOx species are deposited preferentially on the surface defect of CeO2 and then aggregate and grow, accompanied by the formation of isolated Cu ions, CuOx clusters strongly/weakly interacting with the CeO2, highly dispersed Cu O nanoparticles, and large Cu O nanoparticles. The isolated Cu^+ species and CuOx clusters weakly interacting with the CeO2 were observed mainly on the O-terminated CeO2{100} facets. Meanwhile, more Cu(I) species are stabilized during CO reduction processes in CuOx/c-CeO2 catalysts than in CuOx/r-CeO2 and CuOx/p-CeO2 catalysts. The catalytic activities of various CuOx/CeO2 catalysts in CO oxidation vary with both the CuOx species and the CeO2 morphology. These results comprehensively elucidate the CuOx-CeO2 interactions and exemplify their morphology-dependence. 展开更多
关键词 ceo2 nanocrystals Cu Ox/ceo2 catalysts Metal-support interactions CO oxidation Morphology effect
下载PDF
Doping effect of cations(Zr^(4+),Al^(3+),and Si^(4+)) on MnO_x/CeO_2 nano-rod catalyst for NH_3-SCR reaction at low temperature 被引量:7
3
作者 Xiaojiang Yao Jun Cao +4 位作者 Li Chen Keke Kang Yang Chen Mi Tian Fumo Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期733-743,共11页
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods... Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst. 展开更多
关键词 MnOx/ceo2 nano‐rod catalyst Doping effect Oxygen vacancy Surface acidity Low‐temperature NH3‐SCR reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部