以65nm双阱CMOS(Complementary Metal Oxide Semiconductor)工艺的SRAM(Static Random Access Memory)为研究对象,采用三维数值模拟方法,结合SRAM中晶体管布局和邻近SRAM的相对位置,对寄生双极晶体管效应致纳米SRAM内部节点电势多次翻...以65nm双阱CMOS(Complementary Metal Oxide Semiconductor)工艺的SRAM(Static Random Access Memory)为研究对象,采用三维数值模拟方法,结合SRAM中晶体管布局和邻近SRAM的相对位置,对寄生双极晶体管效应致纳米SRAM内部节点电势多次翻转的产生机制进行了深入阐述,对寄生双极晶体管效应致纳米SRAM发生MCU(Multiple Cell Upset)的影响因素进行了详细研究.发现寄生双极晶体管效应致SRAM内部节点电势多次翻转源于N阱中两个PMOS漏极电势的竞争过程,竞争过程与寄生双极晶体管效应的强弱相关,需综合考虑PMOS源极与N阱接触的距离、PMOS漏极与N阱的电势差两个因素.在纳米双阱CMOS工艺的SRAM中,PNP寄生双极晶体管效应对MCU起着重要作用.减小阱接触与SRAM单元的距离,可减弱邻近SRAM的寄生双极晶体管效应并降低MCU的发生概率,即使阱接触距离很近,特殊角度的斜入射和高LET(Linear Energy Transfer)值离子入射仍存在触发邻近SRAM的寄生双极晶体管效应并导致MCU的可能.展开更多
文摘以65nm双阱CMOS(Complementary Metal Oxide Semiconductor)工艺的SRAM(Static Random Access Memory)为研究对象,采用三维数值模拟方法,结合SRAM中晶体管布局和邻近SRAM的相对位置,对寄生双极晶体管效应致纳米SRAM内部节点电势多次翻转的产生机制进行了深入阐述,对寄生双极晶体管效应致纳米SRAM发生MCU(Multiple Cell Upset)的影响因素进行了详细研究.发现寄生双极晶体管效应致SRAM内部节点电势多次翻转源于N阱中两个PMOS漏极电势的竞争过程,竞争过程与寄生双极晶体管效应的强弱相关,需综合考虑PMOS源极与N阱接触的距离、PMOS漏极与N阱的电势差两个因素.在纳米双阱CMOS工艺的SRAM中,PNP寄生双极晶体管效应对MCU起着重要作用.减小阱接触与SRAM单元的距离,可减弱邻近SRAM的寄生双极晶体管效应并降低MCU的发生概率,即使阱接触距离很近,特殊角度的斜入射和高LET(Linear Energy Transfer)值离子入射仍存在触发邻近SRAM的寄生双极晶体管效应并导致MCU的可能.