To improve five-year survival rate of oral squamous cell carcinoma(OSCC),the development of a novel composite material of black phosphorus nanosheets(BPNSs)and gold nanoparticles(AuNPs)for tumor treatment was carried ...To improve five-year survival rate of oral squamous cell carcinoma(OSCC),the development of a novel composite material of black phosphorus nanosheets(BPNSs)and gold nanoparticles(AuNPs)for tumor treatment was carried out.The purpose of this study is to evaluate the cytostatic effects of BPNSs,AuNPs loaded with cisplatin(CDDP)on human tongue squamous cell carcinoma cells lines(SCC-9),and 7,12-dimethylbenz anthracene induced cheek squamous cell carcinoma was validated in golden hamsters animal models.The results showed that BPNSs could efficiently inhibit the metastasis and growth of OSCC compared with CDDP and AuNPs.And a combination composite of AuNPs−BPNSs loaded with CDDP could more effectively inhibit the metastasis and growth of OSCC,which might be due to the high drug-loading capacity,excellent photothermal properties and the combination of photodynamic and photothermal therapy of BPNSs and AuNPs,as well as the synergistic effects of AuNPs,BPNSs and CDDP.展开更多
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th...Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.展开更多
Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attract...Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attracted great attention for integrated on-chip trapping and manipulation. However, optical trapping with high efficiency and low input power is still a big challenge in nanobeam cavities because most of the light energy is confined within the solid dielectric region. To this end, by incorporating a nanoslotted structure into an ultracompact one- dimensional photonic crystal nanobeam cavity structure, we design a promising on-chip device with ultralarge trapping potential depth to enhance the optical trapping characteristic of the cavity. In this work, we first provide a systematic analysis of the optical trapping force for an airborne polystyrene (PS) nanoparticle trapped in a cavity model. Then, to validate the theoretical analysis, the numerical simulation proof is demonstrated in detail by using the three-dimensional finite element method. For trapping a PS nanoparticle of 10 nm radius within the air-slot, a maximum trapping force as high as 8.28 nN/mW and a depth of trapping potential as large as 1.15 × 105 kBTmW-1 are obtained, where kB is the Boltzmann constant and T is the system temperature. We estimate a lateral trapping stiffness of 167.17 pN. nm-1 . mW-1 for a 10 nm radius PS nanoparticle along the cavity x-axis, more than two orders of magnitude higher than previously demonstrated on-chip, near field traps. Moreover, the threshold power for stable trapping as low as 0.087 μW is achieved. In addition, trapping of a single 25 nm radius PS nanoparticle causes a 0.6 nm redshift in peak wavelength. Thus, the proposed cavity device can be used to detect single nanoparticle trapping by monitoring the resonant peak wavelength shift. We believe that the architecture with features of an ultracompact footprint, high integrahility with optical waveguides/cir- cuits, and efficient trapping demonstrated here will provide a promising candidate for developing a lab-on-a-chip device with versatile functionalities.展开更多
Dear Editors,Recently,a nanomechanical resonator with frequency of the order of 1 GHz approaches the quantum regime[1],it is getting closer to test the basic principles of quantum mechanics and very important in the s...Dear Editors,Recently,a nanomechanical resonator with frequency of the order of 1 GHz approaches the quantum regime[1],it is getting closer to test the basic principles of quantum mechanics and very important in the study of quantum information[2].Generally,a nanomechanical QED(qubit-resonator)system consists of a superconducting qubit[3]and a nanomechanical resonator.Increasing the amplitude of oscillating,the nonlinearity of nanomechanical resonator[4]is not negligible which can be exploited to generate nonclassical states in mechanical展开更多
In nanomechanical QED system,consisting of a charge qubit and a nanomechanical resonator with intrinsic nonlinearity,we study the temporal behavior of Rabi oscillation in the nonlinear Jaynes-Cummings model.Using micr...In nanomechanical QED system,consisting of a charge qubit and a nanomechanical resonator with intrinsic nonlinearity,we study the temporal behavior of Rabi oscillation in the nonlinear Jaynes-Cummings model.Using microscopic master equation approach,we solve time evolution of the density operator describing this model.Also,the probability of excited state of charge qubit is calculated.These analytic calculations show how nonlinearity parameter and decay rates of two different excited states of the qubit-resonator system affect time-oscillating and decaying of Rabi oscillation.展开更多
基金This work was supported by the National Key R&D Program of China(No.2016YFA0200601)the National Natural Science Foundation of China(No.21790352)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB36000000)the Anhui Initiative in Quantum Information Technologies(No.AHY090100).
基金The authors are grateful for financial supports from the National Natural Science Foundation of China(No.81671003)Hunan Graduate Education Innovation and Professional Ability Improvement Project,China(No.CX20200329)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2020zzts056).
文摘To improve five-year survival rate of oral squamous cell carcinoma(OSCC),the development of a novel composite material of black phosphorus nanosheets(BPNSs)and gold nanoparticles(AuNPs)for tumor treatment was carried out.The purpose of this study is to evaluate the cytostatic effects of BPNSs,AuNPs loaded with cisplatin(CDDP)on human tongue squamous cell carcinoma cells lines(SCC-9),and 7,12-dimethylbenz anthracene induced cheek squamous cell carcinoma was validated in golden hamsters animal models.The results showed that BPNSs could efficiently inhibit the metastasis and growth of OSCC compared with CDDP and AuNPs.And a combination composite of AuNPs−BPNSs loaded with CDDP could more effectively inhibit the metastasis and growth of OSCC,which might be due to the high drug-loading capacity,excellent photothermal properties and the combination of photodynamic and photothermal therapy of BPNSs and AuNPs,as well as the synergistic effects of AuNPs,BPNSs and CDDP.
基金supported by the State Scholarship Fund organized by the China Scholarship Council(CSC).
文摘Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.
基金National Natural Science Foundation of China(NSFC)(61501053,61611540346,11474011,11654003,61435001,61471050,61622103)National Key R&D Program of China(2016YFA0301302)+1 种基金Fund of the State Key Laboratory of Information Photonics and Optical Communications(IPOC2017ZT05)Beijing University of Posts and Telecommunications,China
文摘Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attracted great attention for integrated on-chip trapping and manipulation. However, optical trapping with high efficiency and low input power is still a big challenge in nanobeam cavities because most of the light energy is confined within the solid dielectric region. To this end, by incorporating a nanoslotted structure into an ultracompact one- dimensional photonic crystal nanobeam cavity structure, we design a promising on-chip device with ultralarge trapping potential depth to enhance the optical trapping characteristic of the cavity. In this work, we first provide a systematic analysis of the optical trapping force for an airborne polystyrene (PS) nanoparticle trapped in a cavity model. Then, to validate the theoretical analysis, the numerical simulation proof is demonstrated in detail by using the three-dimensional finite element method. For trapping a PS nanoparticle of 10 nm radius within the air-slot, a maximum trapping force as high as 8.28 nN/mW and a depth of trapping potential as large as 1.15 × 105 kBTmW-1 are obtained, where kB is the Boltzmann constant and T is the system temperature. We estimate a lateral trapping stiffness of 167.17 pN. nm-1 . mW-1 for a 10 nm radius PS nanoparticle along the cavity x-axis, more than two orders of magnitude higher than previously demonstrated on-chip, near field traps. Moreover, the threshold power for stable trapping as low as 0.087 μW is achieved. In addition, trapping of a single 25 nm radius PS nanoparticle causes a 0.6 nm redshift in peak wavelength. Thus, the proposed cavity device can be used to detect single nanoparticle trapping by monitoring the resonant peak wavelength shift. We believe that the architecture with features of an ultracompact footprint, high integrahility with optical waveguides/cir- cuits, and efficient trapping demonstrated here will provide a promising candidate for developing a lab-on-a-chip device with versatile functionalities.
文摘Dear Editors,Recently,a nanomechanical resonator with frequency of the order of 1 GHz approaches the quantum regime[1],it is getting closer to test the basic principles of quantum mechanics and very important in the study of quantum information[2].Generally,a nanomechanical QED(qubit-resonator)system consists of a superconducting qubit[3]and a nanomechanical resonator.Increasing the amplitude of oscillating,the nonlinearity of nanomechanical resonator[4]is not negligible which can be exploited to generate nonclassical states in mechanical
文摘In nanomechanical QED system,consisting of a charge qubit and a nanomechanical resonator with intrinsic nonlinearity,we study the temporal behavior of Rabi oscillation in the nonlinear Jaynes-Cummings model.Using microscopic master equation approach,we solve time evolution of the density operator describing this model.Also,the probability of excited state of charge qubit is calculated.These analytic calculations show how nonlinearity parameter and decay rates of two different excited states of the qubit-resonator system affect time-oscillating and decaying of Rabi oscillation.