Segmentation of the thrust fault zone is a basic problem for earthquake hazard evaluation. The Yingjing-Mabian-Yanjin thrust fault zone is an important seismic belt NW-trending in the southeast margin of the Qinghal-X...Segmentation of the thrust fault zone is a basic problem for earthquake hazard evaluation. The Yingjing-Mabian-Yanjin thrust fault zone is an important seismic belt NW-trending in the southeast margin of the Qinghal-Xizang (Tibet) plateau. The longitudinal faults in the thrust zone are mainly of the thrust slipping type. The late Quaternary motion modes and displacement rates are quite different from north to south. Investigation on valleys across the fault shows that the transverse faults are mainly of dextral strike-slipping type with a bit dip displacement. Based on their connections with the longitudinal faults, three types of transverse faults are generalized, namely: the separate fault, the transform fault and the tear fault, and their functions in the segmentation of the thrust fault zone are compared. As the result, the Yingjing-Mabian-Yanjin thrust fault zone is divided into three segments, and earthquakes occurring in these three segments are compared. The tri-section of the Yingjing-Mabian-Yanjin thrust fault zone identified by transverse fault types reflects, on the one hand, the differences in slip rate, earthquake magnitude and pace from each segment, and the coherence of earthquake rupturing pace on the other hand. It demonstrates that the transverse faults control the segmentation to a certain degree, and each type of the transverse faults plays a different role.展开更多
A computational method and a mechanical model for evaluating the vertical dynamic harmonic response characteristics of a single pile embedded in non-homogeneous soil layers and subjected to harmonic loadings were esta...A computational method and a mechanical model for evaluating the vertical dynamic harmonic response characteristics of a single pile embedded in non-homogeneous soil layers and subjected to harmonic loadings were established based on a certain assumption and the improved dynamic model of beam-on-Winkler foundation by using the principle of soil dynamics and structure dynamics. Both non-homogeneity of soil strata and softening effect of soil layer around the pile during vibration were simultaneously taken into account in the proposed computational model. It is shown through the comparative study on a numerical example that the numerical results of dynamic response of the single pile computed by the proposed method are relatively rational and can well agree with the numerical results computed from the well-known software of finite element method. Finally the parametric studies were conducted for a varied range of main parameters to discuss the effects of relevant factors on dynamic responses of the single pile embedded in non-homogeneous layered soils excited by harmonic loading with different frequencies.展开更多
基金The research was sponsored bythe keyresearch project entitled"Seismic Safety Evaluation and Structural Earthquake Resistance"under the 10th Five-Year Program of the ChinaEarthquake Administration the Joint Earthquake Science Foundation of China (0101302) Contribution number :2005A001 ,the Institute of Crustal Dynamics ,CEA.
文摘Segmentation of the thrust fault zone is a basic problem for earthquake hazard evaluation. The Yingjing-Mabian-Yanjin thrust fault zone is an important seismic belt NW-trending in the southeast margin of the Qinghal-Xizang (Tibet) plateau. The longitudinal faults in the thrust zone are mainly of the thrust slipping type. The late Quaternary motion modes and displacement rates are quite different from north to south. Investigation on valleys across the fault shows that the transverse faults are mainly of dextral strike-slipping type with a bit dip displacement. Based on their connections with the longitudinal faults, three types of transverse faults are generalized, namely: the separate fault, the transform fault and the tear fault, and their functions in the segmentation of the thrust fault zone are compared. As the result, the Yingjing-Mabian-Yanjin thrust fault zone is divided into three segments, and earthquakes occurring in these three segments are compared. The tri-section of the Yingjing-Mabian-Yanjin thrust fault zone identified by transverse fault types reflects, on the one hand, the differences in slip rate, earthquake magnitude and pace from each segment, and the coherence of earthquake rupturing pace on the other hand. It demonstrates that the transverse faults control the segmentation to a certain degree, and each type of the transverse faults plays a different role.
基金the Post Doctor Science Foundation of China(Grant No.20060390806 &20060400241)the Taishan Scholar Foundation of Shandong ProvinceScience Development Foundation of Shandong University of Science and Technology(Grant No.05g002)
文摘A computational method and a mechanical model for evaluating the vertical dynamic harmonic response characteristics of a single pile embedded in non-homogeneous soil layers and subjected to harmonic loadings were established based on a certain assumption and the improved dynamic model of beam-on-Winkler foundation by using the principle of soil dynamics and structure dynamics. Both non-homogeneity of soil strata and softening effect of soil layer around the pile during vibration were simultaneously taken into account in the proposed computational model. It is shown through the comparative study on a numerical example that the numerical results of dynamic response of the single pile computed by the proposed method are relatively rational and can well agree with the numerical results computed from the well-known software of finite element method. Finally the parametric studies were conducted for a varied range of main parameters to discuss the effects of relevant factors on dynamic responses of the single pile embedded in non-homogeneous layered soils excited by harmonic loading with different frequencies.