We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water...We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.展开更多
For the complicated reservoir description of the GD oilfield, P-wave and S-wave elastic impedance inversion was carried out using pre-stack seismic data to accurately identify the lithology of the reservoir. The joint...For the complicated reservoir description of the GD oilfield, P-wave and S-wave elastic impedance inversion was carried out using pre-stack seismic data to accurately identify the lithology of the reservoir. The joint inversion was performed using three or more partial stacks to overcome the singularity of post-stack seismic inversion that can not satisfy the requirements of complex reservoir description and to avoid the instability of the inversion result caused by low signal-noise ratio in the pre-stack gather. The basic theory of prestack elastic impedance inversion is briefly described in this paper and, using real data of the GD oilfield, the key steps of angle gather wavelet extraction, horizon calibration, S-wave velocity prediction, and elastic parameter extraction were analyzed and studied. The comprehensive interpretation of multiple elastic parameters determined from log analysis is a key to improving the effect ofprestack seismic inversion.展开更多
To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based ...To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based on the total discharge formulation and turbulence theory of slope flow.Using experimental data measured using the British pendulum test under varying WFT levels,a model for calculating the skid resistance,namely the British pendulum number(BPN),was formulated and used to quantitatively evaluate the effects of rainfall intensity,transverse,and longitudinal slopes on the computed BPN.The study results reveal that skid resistance is linearly proportional to the pavement transverse slope and inversely proportional to the rainfall intensity and the pavement longitudinal slope.In particular,rainfall intensity,along with pavement texture depth,exhibited a significant impact on the tire-pavement friction and skid-resistance performance.The results further indicate that driving safety under wet weather is predominantly governed by skid resistance and visibility.The BPN and sideway force coefficient(SFC60)values for new asphalt pavements under different rainfall intensities are provided along with some modification to the stopping sight distance(SSD)criteria.Safe driving speed limits are also determined using a safe-driving model to develop the appropriate speed limit strategies.The overall study results provide some insights,methodology approach,and reference data for the evaluation of pavement skid-resistance performance and driving safety conditions under different pavement slopes and rainfall intensities.展开更多
Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability...Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability and controllability.Motion control,stability maintenance and ride comfort improvement are fundamental issues in design of suspension system of off-road vehicles.In this work,a dependent suspension system mostly used in off-road vehicles is modeled using Trucksim software.Then,geometric parameters of suspension system are optimized using integrated anti-roll bar and coiling spring in a way that ride comfort,handling and stability of vehicle are improved.The simulation results of suspension system and variations of geometric parameters due to road roughness and different steering angles are presented in Trucksim and effects of optimization of suspension system during various driving maneuvers in both optimized and un-optimized conditions are compared.The simulation results indicate that the type of suspension system and geometric parameters have significant effect on vehicle performance.展开更多
Coal rock is a type of dual-porosity medium,which is composed of matrix pores and fracture-cutting matrix.They play different roles in the seepage and storage capacity of coal rock.Therefore,constructing the micropore...Coal rock is a type of dual-porosity medium,which is composed of matrix pores and fracture-cutting matrix.They play different roles in the seepage and storage capacity of coal rock.Therefore,constructing the micropore structure of coal rock is very important in the exploration and development of coalbed methane.In this study,we use a coal rock digital core and three-dimensional modeling to study the pore structure of coal rock.First,the micropore structure of coal rock is quantitatively analyzed using a two-dimensional thin-section image,and the quantitative information of the pore and fracture(cleat)structure in the coal rock is extracted.The mean value and standard deviation of the face porosity and pore radius are obtained using statistical analysis.The number of pores is determined using dichotomy and spherical random-packing methods based on compression.By combining with the results of the petrophysical analysis,the single-porosity structure model of the coal rock is obtained using a nonequal-diameter sphere to represent the pores of the coal rock.Then,an ellipsoid with an aspect ratio that is very much lesser than one is used to represent the fracture(cleat)in the coal rock,and a dual-pore structure model of the coal rock is obtained.On this basis,the relationship between the different pore aspect ratios and porosity is explored,and a fitting relationship is obtained.The results show that a nonlinear relationship exists between them.The relationship model can provide a basis for the prediction of coal rock pore structure and the pore structure parameters and provide a reference for understanding the internal structure of coalbed methane reservoirs.展开更多
Apparent differences in sedimentation and diagenesis exist between carbonate reservoirs in different areas and affect their petrophysical and elastic properties.To elucidate the relevant mechanism,we study and analyze...Apparent differences in sedimentation and diagenesis exist between carbonate reservoirs in different areas and affect their petrophysical and elastic properties.To elucidate the relevant mechanism,we study and analyze the characteristics of rock microstructure and elastic properties of carbonates and their variation regularity using 89 carbonate samples from the different areas The results show that the overall variation regularities of the physical and elastic properties of the carbonate rocks are controlled by the microtextures of the microcrystalline calcite,whereas the traditional classification of rock-and pore-structures is no longer applicable.The micrite microtextures can be divided,with respect to their morphological features,into porous micrite,compact micrite,and tight micrite.As the micrites evolves from the first to the last type,crystal boundaries are observed with increasingly close coalescence,the micritic intercrystalline porosity and pore-throat radius gradually decrease;meanwhile,the rigidity of the calcite microcrystalline particle boundary and elastic homogeneity are enhanced.As a result,the seismic elastic characteristics,such as permeability and velocity of samples,show a general trend of decreasing with the increase of porosity.For low-porosity rock samples(φ<5%)dominated by tight micrite,the micritic pores have limited contributions to porosity and permeability and the micrite elastic properties are similar to those of the rock matrix.In such cases,the macroscopic physical and elastic properties are more susceptible to the formation of cracks and dissolution pores,but these features are controlled by the pore structure.The pore aspect ratio can be used as a good indication of pore types.The bulk modulus aspect ratio for dissolution pores is greater than 0.2,whereas that of the intergranular pores ranges from 0.1 to 0.2.The porous and compact micrites are observed to have a bulk modulus aspect ratio less than 0.1,whereas the ratio of the tight micrite approaches 0.2。展开更多
Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory...Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.展开更多
The aeroelastic responses of a high-aspect-ratio wing are investigated based on nonlinear experimental aerodynamic forces. The influences of nonlinear experimental aerodynamic forces and dynamic pressures on the wing ...The aeroelastic responses of a high-aspect-ratio wing are investigated based on nonlinear experimental aerodynamic forces. The influences of nonlinear experimental aerodynamic forces and dynamic pressures on the wing loads are studied in the longitudinal and lateral maneuver states. The flight loads of the wing fixed at the root are calculated at different angles of attack. The aileron efficiency with respect to the dynamic pressures and aileron deflections are also studied. The results indicate that the flight loads of the wings vary nonlinearly with the angle of attack and dynamic pressure. Due to the high-lift aerofoil, elastic components are a large portion of the wing loads, especially for small angles of attack and high dynamic pressure condi-tions. The aileron efficiency is significantly affected by aileron deflections, dynamic pressures and angles of attack when the nonlinear experimental aerodynamic forces are used for calculation. In states with high dynamic pressures and large aileron deflections, aileron reversal can occur. The aileron deflection and angle of attack have a nonlinear effect on the aileron efficiency. An efficient method for analyzing the flight loads and structural design of high-aspect-ratio wings is derived in this study, and the analysis can provide insight into the distribution of flight loads for high-aspect-ratio wings.展开更多
基金sponsored by the China Postdoctoral Science Foundation Projects(2014M550779)
文摘We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.
文摘For the complicated reservoir description of the GD oilfield, P-wave and S-wave elastic impedance inversion was carried out using pre-stack seismic data to accurately identify the lithology of the reservoir. The joint inversion was performed using three or more partial stacks to overcome the singularity of post-stack seismic inversion that can not satisfy the requirements of complex reservoir description and to avoid the instability of the inversion result caused by low signal-noise ratio in the pre-stack gather. The basic theory of prestack elastic impedance inversion is briefly described in this paper and, using real data of the GD oilfield, the key steps of angle gather wavelet extraction, horizon calibration, S-wave velocity prediction, and elastic parameter extraction were analyzed and studied. The comprehensive interpretation of multiple elastic parameters determined from log analysis is a key to improving the effect ofprestack seismic inversion.
基金The National Natural Science Foundation of China(No.51478114)
文摘To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based on the total discharge formulation and turbulence theory of slope flow.Using experimental data measured using the British pendulum test under varying WFT levels,a model for calculating the skid resistance,namely the British pendulum number(BPN),was formulated and used to quantitatively evaluate the effects of rainfall intensity,transverse,and longitudinal slopes on the computed BPN.The study results reveal that skid resistance is linearly proportional to the pavement transverse slope and inversely proportional to the rainfall intensity and the pavement longitudinal slope.In particular,rainfall intensity,along with pavement texture depth,exhibited a significant impact on the tire-pavement friction and skid-resistance performance.The results further indicate that driving safety under wet weather is predominantly governed by skid resistance and visibility.The BPN and sideway force coefficient(SFC60)values for new asphalt pavements under different rainfall intensities are provided along with some modification to the stopping sight distance(SSD)criteria.Safe driving speed limits are also determined using a safe-driving model to develop the appropriate speed limit strategies.The overall study results provide some insights,methodology approach,and reference data for the evaluation of pavement skid-resistance performance and driving safety conditions under different pavement slopes and rainfall intensities.
文摘Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability and controllability.Motion control,stability maintenance and ride comfort improvement are fundamental issues in design of suspension system of off-road vehicles.In this work,a dependent suspension system mostly used in off-road vehicles is modeled using Trucksim software.Then,geometric parameters of suspension system are optimized using integrated anti-roll bar and coiling spring in a way that ride comfort,handling and stability of vehicle are improved.The simulation results of suspension system and variations of geometric parameters due to road roughness and different steering angles are presented in Trucksim and effects of optimization of suspension system during various driving maneuvers in both optimized and un-optimized conditions are compared.The simulation results indicate that the type of suspension system and geometric parameters have significant effect on vehicle performance.
基金sponsored by the National Natural Science Foundation of China(No.41274129)National Science and Technology Major Project(No.2016ZX05026001-004)+2 种基金Key Research and Development Program of Sichuan Province(No.2020YFG0157)the 2018 Central Supporting Local Coconstruction Fund(No.80000-18Z0140504)the Construction and Development of Universities in 2019-Joint Support for Geophysics(Double First-Class center,80000-19Z0204).
文摘Coal rock is a type of dual-porosity medium,which is composed of matrix pores and fracture-cutting matrix.They play different roles in the seepage and storage capacity of coal rock.Therefore,constructing the micropore structure of coal rock is very important in the exploration and development of coalbed methane.In this study,we use a coal rock digital core and three-dimensional modeling to study the pore structure of coal rock.First,the micropore structure of coal rock is quantitatively analyzed using a two-dimensional thin-section image,and the quantitative information of the pore and fracture(cleat)structure in the coal rock is extracted.The mean value and standard deviation of the face porosity and pore radius are obtained using statistical analysis.The number of pores is determined using dichotomy and spherical random-packing methods based on compression.By combining with the results of the petrophysical analysis,the single-porosity structure model of the coal rock is obtained using a nonequal-diameter sphere to represent the pores of the coal rock.Then,an ellipsoid with an aspect ratio that is very much lesser than one is used to represent the fracture(cleat)in the coal rock,and a dual-pore structure model of the coal rock is obtained.On this basis,the relationship between the different pore aspect ratios and porosity is explored,and a fitting relationship is obtained.The results show that a nonlinear relationship exists between them.The relationship model can provide a basis for the prediction of coal rock pore structure and the pore structure parameters and provide a reference for understanding the internal structure of coalbed methane reservoirs.
基金supported by the National Natural Science Foundation of China(Nos.41774136 and 41374135)the Sichuan Science and Technology Program(No.2016ZX05004-003)
文摘Apparent differences in sedimentation and diagenesis exist between carbonate reservoirs in different areas and affect their petrophysical and elastic properties.To elucidate the relevant mechanism,we study and analyze the characteristics of rock microstructure and elastic properties of carbonates and their variation regularity using 89 carbonate samples from the different areas The results show that the overall variation regularities of the physical and elastic properties of the carbonate rocks are controlled by the microtextures of the microcrystalline calcite,whereas the traditional classification of rock-and pore-structures is no longer applicable.The micrite microtextures can be divided,with respect to their morphological features,into porous micrite,compact micrite,and tight micrite.As the micrites evolves from the first to the last type,crystal boundaries are observed with increasingly close coalescence,the micritic intercrystalline porosity and pore-throat radius gradually decrease;meanwhile,the rigidity of the calcite microcrystalline particle boundary and elastic homogeneity are enhanced.As a result,the seismic elastic characteristics,such as permeability and velocity of samples,show a general trend of decreasing with the increase of porosity.For low-porosity rock samples(φ<5%)dominated by tight micrite,the micritic pores have limited contributions to porosity and permeability and the micrite elastic properties are similar to those of the rock matrix.In such cases,the macroscopic physical and elastic properties are more susceptible to the formation of cracks and dissolution pores,but these features are controlled by the pore structure.The pore aspect ratio can be used as a good indication of pore types.The bulk modulus aspect ratio for dissolution pores is greater than 0.2,whereas that of the intergranular pores ranges from 0.1 to 0.2.The porous and compact micrites are observed to have a bulk modulus aspect ratio less than 0.1,whereas the ratio of the tight micrite approaches 0.2。
文摘Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60736025, 90716006, 10902006)the Doctoral Pro-gram Foundation of Institutions of Higher Education of China (Grant No. 20091102110015)the Major Programs of China National Space Administration (Grant No. D2120060013)
文摘The aeroelastic responses of a high-aspect-ratio wing are investigated based on nonlinear experimental aerodynamic forces. The influences of nonlinear experimental aerodynamic forces and dynamic pressures on the wing loads are studied in the longitudinal and lateral maneuver states. The flight loads of the wing fixed at the root are calculated at different angles of attack. The aileron efficiency with respect to the dynamic pressures and aileron deflections are also studied. The results indicate that the flight loads of the wings vary nonlinearly with the angle of attack and dynamic pressure. Due to the high-lift aerofoil, elastic components are a large portion of the wing loads, especially for small angles of attack and high dynamic pressure condi-tions. The aileron efficiency is significantly affected by aileron deflections, dynamic pressures and angles of attack when the nonlinear experimental aerodynamic forces are used for calculation. In states with high dynamic pressures and large aileron deflections, aileron reversal can occur. The aileron deflection and angle of attack have a nonlinear effect on the aileron efficiency. An efficient method for analyzing the flight loads and structural design of high-aspect-ratio wings is derived in this study, and the analysis can provide insight into the distribution of flight loads for high-aspect-ratio wings.