期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的传统剪纸图像风格迁移算法研究 被引量:2
1
作者 王琪 魏纵横 崔曼曼 《电脑知识与技术》 2023年第5期1-5,共5页
相比于水墨画、蜡染等其他艺术,剪纸具有严格的线性纹理结构和鲜明的纹样特异性,这给剪纸艺术的智能化创新带来了挑战。为此,提出了一种基于预训练卷积神经网络的剪纸风格迁移算法,在最大程度保留传统剪纸艺术特色的基础上,实现剪纸风... 相比于水墨画、蜡染等其他艺术,剪纸具有严格的线性纹理结构和鲜明的纹样特异性,这给剪纸艺术的智能化创新带来了挑战。为此,提出了一种基于预训练卷积神经网络的剪纸风格迁移算法,在最大程度保留传统剪纸艺术特色的基础上,实现剪纸风格的快速准确迁移。首先,选择将内容图像作为初始迭代图像,以保留更多内容信息;其次,提出基于预训练卷积神经网络的小型网络以减少参数计算,实现风格特征及内容特征的快速提取;之后,引入全变分损失,提出一种基于绝对值误差的新损失函数,以提高图像的平滑性;最后,引入自适应的Adam优化算法,以减少梯度消失及梯度爆炸等现象。实验结果表明,该算法能够获得较为理想的风格迁移效果。 展开更多
关键词 图像风格迁移 剪纸 纹样特异性 卷积神经网络 损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部