This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural plan...The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural planes,the distribution characteristics of tectonic geological factors and the stability of engineering structures according to the theory and research methods of rock mechanics,it will provide the engineering geological evidence for mining area exploited,meanwhile pledge the safety production.Shanmen silver deposit is a large epithermal deposit,it is controlled by NE to NNE strike faults.The stability of rock mass is acted on the tectonic movement and hot metalliferous brine in long-term.Especially,strength of rock mass becomes softened,muddy and loosed under the action of water,so the lower stability of rock mass is,the easier it can take place for harm of disaster threatening production safe of mining.For this reason,it is very important that drawing up a plan to lower harm for mine and protect.展开更多
Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great sign...Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great significance to the understanding of rock failure mechanisms.To this end,we have conducted numerical simulation researches on modeⅠcracking process of rock with varying homogeneity,using the Realistic Failure Process Analysis program.With the increase of homogeneity,cracks are concentrating to the ligament area with a decreasing number of crack bifurcations,and the main crack path is becoming smooth.Crack behaviors and mechanical properties are influenced significantly when the homogeneity index is in the range of 1.5 to 5.When the homogeneity index is greater than 30,they are not affected by rock homogeneity and the rock can be considered as essentially homogeneous.It is considered that the global and local strengths are affected by the distribution of rock mechanical properties at mesoscale,which influence the crack behaviors and mechanical characteristics.展开更多
As it is commonly known,the estimation of physical and mechanical characteristics of rocks is very important issue in various geotechnical projects.The characteristics are mainly influenced by the microfabric-texture ...As it is commonly known,the estimation of physical and mechanical characteristics of rocks is very important issue in various geotechnical projects.The characteristics are mainly influenced by the microfabric-texture features of rocks.In this research,dry unit weight,effective porosity,point load index,Schmidt rebound hardness,uniaxial compressive strength,and texture coefficient were measured with the aim of correlating the physical and mechanical properties to the texture coefficient.For this purpose,a comprehensive laboratory testing program was conducted after collecting twenty sedimentary block samples including nine limestones and eleven mudstones,taken from Kalidromo(central Greece)in accordance with ASTM and ISRM standards.Also,mineralogical and petrographic properties,textural characteristics as well as X-ray diffractions were studied and the obtained results were statistically described and analysed.The maximum and minimum values of the texture coefficient were 0.13 and 0.50,respectively.The highest value was obtained for the rocks with a large amount of grains.Regression analyses were used to investigate the relationships between the texture coefficient and the engineering properties.Thus,empirical equations were developed and because of the good determination coefficients,they showed that all of the engineering properties were well correlated to the texture coefficient.展开更多
The present research is focused on the numerical crack coalescence analysis of the micro-cracks and cracks produced during the cutting action of TBM disc cutters. The linear elastic fracture mechanics(LEFM) concepts a...The present research is focused on the numerical crack coalescence analysis of the micro-cracks and cracks produced during the cutting action of TBM disc cutters. The linear elastic fracture mechanics(LEFM) concepts and the maximum tangential stress criterion are used to investigate the micro crack propagation and its direction underneath the excavating discs. A higher order displacement discontinuity method with quadratic displacement discontinuity elements is used to estimate the stress intensity factors near the crack tips. Rock cutting mechanisms under single and double type discs are simulated by the proposed numerical method.The main purposes of the present modeling are to simulate the chip formation process of indented rocks by single and double discs.The effects of specific disc parameters(except speed) on the thrust force Ft, the rolling force Fr, and the specific energy ES are investigated. It has been shown that the specific energy(energy required to cut through a unit volume of rock) of the double disc is less than that of the single disc. Crack propagation in rocks under disc cutters is numerically modeled and the optimum ratio of disc spacing S to penetration depth Pd(i.e. S/Pd ratio) of about 10 is obtained, which is in good agreement with the theoretical and experimental results cited in the literature.展开更多
According to concrete age, the dynamic stress intensity factors of bond interface crack of concrete-rock was calculated. Result shows that the propagation of concreteinterface crack is mainly caused by tensile stress ...According to concrete age, the dynamic stress intensity factors of bond interface crack of concrete-rock was calculated. Result shows that the propagation of concreteinterface crack is mainly caused by tensile stress and shear stress for stress wave reflection. With the growth of concrete age, interface crack fracture toughness increases, and itscapacity of resisting blasting load strengthens. Therefore, blasting vibration should bestrictly controlled for fresh concrete.展开更多
The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hy...The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.展开更多
The cracking patterns of a thin sheet with a pre-existing crack subjected to dynamic loading are numerically simulated to investigate the mechanism of crack branching by using the FEM method.Six numerical models were ...The cracking patterns of a thin sheet with a pre-existing crack subjected to dynamic loading are numerically simulated to investigate the mechanism of crack branching by using the FEM method.Six numerical models were set up to study the effects of load,tensile strength and heterogeneity on crack branching.The crack propagation is affected by the applied loads,tensile strength and heterogeneity.Before crack branching,the crack propagates by some distance along the direction of the pre-existing crack.For the materials with low heterogeneity,the higher the applied stress level is and the lower the tensile strength of the material is,the shorter the propagation distance is.Moreover,the branching angle becomes larger and the number of branching cracks increases.In the case of the materials with high heterogeneity,a lot of disordered voids and microcracks randomly occur along the main crack,so the former law is not obvious.The numerical results not only are in good agreement with the experimental observations in laboratory,but also can be extended to heterogeneity media.The work can provide a good approach to model the cracking and fracturing of heterogeneous quasi-brittle materials,such as rock,under dynamic loading.展开更多
In the construction of water conservancy and hydropower project,young concrete lining structure is often affected by blasting load. Young concrete has a lot of micro-fractures with random distribution,which are easier...In the construction of water conservancy and hydropower project,young concrete lining structure is often affected by blasting load. Young concrete has a lot of micro-fractures with random distribution,which are easier to propagate and connect under blasting load. This paper focuses on the calculation on dynamic stress intensity factors of bond interface crack of concrete-rock according to concrete age. Result shows that different incidence angles of stress wave lead to different crack propagation mechanisms. Under the normal incidence of impact load,the bonding interface crack propagation of the concrete lining is mainly caused by reflection tensile stress,which forms from the free surface. With horizontal incidence of stress wave,the bond interface crack propagation of concrete lining is affected by concrete age. With the increase of concrete age,the elasticity modulus margin between concrete and rock decreases gradually,and the crack propagation form changes from shear failure to tensile damage.展开更多
The serpentinized peridotites overlying the subducted zones in the Izu-Bonin-Mariana(IBM) arc system have been interpret as the cause of the low-velocity layer identified beneath the IBM froearc,in turn few earthquake...The serpentinized peridotites overlying the subducted zones in the Izu-Bonin-Mariana(IBM) arc system have been interpret as the cause of the low-velocity layer identified beneath the IBM froearc,in turn few earthquakes occurred along the plate boundary.Chrysotile,which is a low temperature and highly hydrated phase of serpentine with low frictional strength,has been suggested as the low velocity material in the serpentinized peridotites,besides,brucite is inferred to be likely conducive to stable sliding.However,such idea encounters challenging in our serpentinized peridotites from the southern Mariana forearc,which absent both the above minerals.The presence of talc,which characterized by its weak,low-friction and inherently stable sliding behavior,provides new clue.Here we report the occurrence of talc in serpentinized peridotites collected from the landward trench slope of the southern Mariana forearc.We infer that talc is mainly forming as a result of the reaction of serpentine minerals with silica-saturated fluids released from the subducting slab,and talc also occurs as talc veins sometimes.Due to its unique physical properties,talc may therefore play a significant role in aseismic slip in the IBM subduction zone.展开更多
Peridotites from the southern Mariana forearc were sampled on the landward trench slope of the Izu-Bonin-Mariana (IBM) subduction zone by dredging.These mantle wedge peridotites underwent hydration by fluid derived fr...Peridotites from the southern Mariana forearc were sampled on the landward trench slope of the Izu-Bonin-Mariana (IBM) subduction zone by dredging.These mantle wedge peridotites underwent hydration by fluid derived from a dehydrated descending slab,and later interacted with seawater after emplacement at or near the seafloor.This study investigates how these two different rock-fluid interaction processes influenced trace element distribution in the southern Mariana forearc peridotites.We measured trace element concentrations of peridotites from the southern Mariana forearc.The southern Mariana forearc peridotites are characterized by a distinct seawater-like REE pattern with an obvious negative Ce anomaly,and La shows good correlation with other REEs (except Ce).In addition,there is a great enrichment of U,Pb,Sr and Li elements,which show a distinct positive anomaly relative to adjacent elements in the multi-element diagram.For the seawater-like REE pattern,we infer that REEs are mainly influenced by seawater during peridotite-seawater interactions after their emplacement at or near the seafloor,by serpentinization or by marine weathering.Furthermore,the anomalous behavior of Ce,compared with other rare earth elements in these samples,may indicate that they have undergone reactions involving Ce (IV) when the peridotites interacted with seawater.Positive U,Pb,Sr and Li anomalies are inferred to be related to seawater and/or fluids released during dehydration of the subducting slab.展开更多
Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Thro...Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Through cutting sand-cement grout samples, the spacing interval of boreholes can approach 17.5 times of the bore-hole' s diameter, and the result of the directional expansion of crack is satisfactory. The result of field experiment indicates cutting effect is very good, the ruggedness in fracture plane is less than 50 mm, the rate of half-hole marks is nearly 100 % , and the crack inspection shows that there is no damage in the internal of the cutting part. All these suggest that the orientation fracture blasting with LSC is a good means in directional fracture controlled blasting and is worth popularizing widely.展开更多
The curves of crack relative length lib and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-to...The curves of crack relative length lib and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-torsion constant displacement load relaxa- tion method. The relations between crack relative length and the crack growth time were discussed under different stresses and different crack lengths. The results show that there is a turning point on curve of crack relative length lib and crack growth time of granite. The slope of curve is small when crack relative length is less than the vertical coordinate of the point, and crack grows stably in this case. Cracks grow, encounter and integrate catastro- phically when crack relative length is more than the vertical coordinate of the point, and there is not a gradual stage from crack stability growth to crack instability growth, i.e. rock mass instability is sudden. The curves of crack relative length lib and crack growth time t of granite move to right with decrease of stress σl or crack length a, which implies that limit time increases consequently. The results correspond to practicality.展开更多
The article presents the results of study of composition, structure and properties of three genetic types of serpentinite, developed by chromite-bearing ultrabasic rocks, by metamorphic zones of carbonate rocks and wi...The article presents the results of study of composition, structure and properties of three genetic types of serpentinite, developed by chromite-bearing ultrabasic rocks, by metamorphic zones of carbonate rocks and within the zone of weathering of ultrabasic rocks. The samples were selected from deposits, located along the Main Ural Fault-the Paleozoic subduction zone (named GUR). Peculiarities of microstructure, chemical composition and properties of serpentinites formed in different geological conditions were investigated and their comparative study was held. They were devided three groups of serpentinites with oriented and non-oriented structure which formed by different protholites: mantle, lithosphere and crust.展开更多
The dependence of starting materials and their initial grain sizes on the formation of gases (H2, CH4, C2H6 and C3Hs) during serpentinization was investigated by conducting hydrothermal experiments at 311℃ and 3 kb...The dependence of starting materials and their initial grain sizes on the formation of gases (H2, CH4, C2H6 and C3Hs) during serpentinization was investigated by conducting hydrothermal experiments at 311℃ and 3 kbar on olivine and peridotite with initial grain sizes ranging from 〈30 to 177 μm. Hydrocarbons (CH4, C2H6 and C3H8) were produced from reaction between dissolved CO2 in the starting fluids and HE formed during serpentinization, which were analyzed by Gas Chromatography. It was found that olivine serpentinization produced much less H2 and CH4 compared with those after peridotite alteration, while their C2H6 and C3H8 were identical. For example, for olivine with initial grain sizes of 〈30 μm, the amounts of HE and CH4 were 79.6 mmol/kg and 460 μmol/kg after 27 days, respectively. By contrast, the quantities of H2 and CH4 produced in experiment on peridotite with the same run duration were much larger, 119 mmol/kg and 1300 μmol/kg, respectively. This indicates that spinel and pyroxene in peridotite may increase the amounts of HE and hydrocarbons, possibly due to the catalytic effect of aluminum released by spinel and pyroxene during serpentinization. Moreover, the production of H2 and hydrocarbons is negatively correlated with initial grain sizes of the starting material, with smaller amounts of HE and hydrocarbons for larger initial grain sizes, indicating that the kinetics of serpentinization influences the formation of HE and hydrocarbons, possibly because of the lack of catalytic minerals for the starting material with larger grain sizes. This study suggests that olivine cannot completely represent peridotite during serpentinization, and that H2 and hydrocarbons in hydrothermal fields near the mid-ocean ridge may be produced in a very long period of serpentinization or the presence of catalytic minerals due to large grain sizes of ultramafic rocks.展开更多
Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes o...Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes of serpentinites, samples from ODP Holes 897 D and 1070 A were investigated by integrating both magnetic and non-magnetic methods. Detailed rock magnetic results demonstrate that magnetite prevails in the entire serpentinite section, while maghemite is present in the upper and altered parts. The concentration of Fe in the fresh peridotite is inhomogeneous; nonetheless, the magnetic properties are generally determined by the serpentinization process. The formation and state of the magnetite depend on the fracture conditioning and fluid activities which are controlled by the serpentinization process. By comparing these two holes, we found that the production of magnetite is consistent with the serpentinization process; serpentinization is a multi-stage process which involves early high-temperature serpentinization and later low-temperature oxidation. As the serpentinization continues, the fine magnetic particles become coarser, combined with the formation of new SP particles, and the later low-temperature oxidation leads to the maghemitization of the magnetites. The duration of oxidation also contributes to the differences of remanent magnetization between these two holes. These results greatly improve our understanding of the magnetic enhancement during the serpentinization process, and provide constraints on the interpretation of the paleomagnetic and aeromagnetic anomalies in this area.展开更多
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
文摘The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural planes,the distribution characteristics of tectonic geological factors and the stability of engineering structures according to the theory and research methods of rock mechanics,it will provide the engineering geological evidence for mining area exploited,meanwhile pledge the safety production.Shanmen silver deposit is a large epithermal deposit,it is controlled by NE to NNE strike faults.The stability of rock mass is acted on the tectonic movement and hot metalliferous brine in long-term.Especially,strength of rock mass becomes softened,muddy and loosed under the action of water,so the lower stability of rock mass is,the easier it can take place for harm of disaster threatening production safe of mining.For this reason,it is very important that drawing up a plan to lower harm for mine and protect.
基金Project(BJJWZYJH01201911413037)supported by the Beijing Outstanding Young Scientist Program,ChinaProjects(51622404,41877257)supported by the National Natural Science Foundation of ChinaProject(2018SMHKJ-A-J-03)supported by Shaanxi Coal Group Key Project,China。
文摘Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great significance to the understanding of rock failure mechanisms.To this end,we have conducted numerical simulation researches on modeⅠcracking process of rock with varying homogeneity,using the Realistic Failure Process Analysis program.With the increase of homogeneity,cracks are concentrating to the ligament area with a decreasing number of crack bifurcations,and the main crack path is becoming smooth.Crack behaviors and mechanical properties are influenced significantly when the homogeneity index is in the range of 1.5 to 5.When the homogeneity index is greater than 30,they are not affected by rock homogeneity and the rock can be considered as essentially homogeneous.It is considered that the global and local strengths are affected by the distribution of rock mechanical properties at mesoscale,which influence the crack behaviors and mechanical characteristics.
文摘As it is commonly known,the estimation of physical and mechanical characteristics of rocks is very important issue in various geotechnical projects.The characteristics are mainly influenced by the microfabric-texture features of rocks.In this research,dry unit weight,effective porosity,point load index,Schmidt rebound hardness,uniaxial compressive strength,and texture coefficient were measured with the aim of correlating the physical and mechanical properties to the texture coefficient.For this purpose,a comprehensive laboratory testing program was conducted after collecting twenty sedimentary block samples including nine limestones and eleven mudstones,taken from Kalidromo(central Greece)in accordance with ASTM and ISRM standards.Also,mineralogical and petrographic properties,textural characteristics as well as X-ray diffractions were studied and the obtained results were statistically described and analysed.The maximum and minimum values of the texture coefficient were 0.13 and 0.50,respectively.The highest value was obtained for the rocks with a large amount of grains.Regression analyses were used to investigate the relationships between the texture coefficient and the engineering properties.Thus,empirical equations were developed and because of the good determination coefficients,they showed that all of the engineering properties were well correlated to the texture coefficient.
文摘The present research is focused on the numerical crack coalescence analysis of the micro-cracks and cracks produced during the cutting action of TBM disc cutters. The linear elastic fracture mechanics(LEFM) concepts and the maximum tangential stress criterion are used to investigate the micro crack propagation and its direction underneath the excavating discs. A higher order displacement discontinuity method with quadratic displacement discontinuity elements is used to estimate the stress intensity factors near the crack tips. Rock cutting mechanisms under single and double type discs are simulated by the proposed numerical method.The main purposes of the present modeling are to simulate the chip formation process of indented rocks by single and double discs.The effects of specific disc parameters(except speed) on the thrust force Ft, the rolling force Fr, and the specific energy ES are investigated. It has been shown that the specific energy(energy required to cut through a unit volume of rock) of the double disc is less than that of the single disc. Crack propagation in rocks under disc cutters is numerically modeled and the optimum ratio of disc spacing S to penetration depth Pd(i.e. S/Pd ratio) of about 10 is obtained, which is in good agreement with the theoretical and experimental results cited in the literature.
基金Supported by the National Natural Science Foundation of China(50774056,50779050)Scientific Research Fund of Wuhan University of Science and Technology(080068,2008XY19)
文摘According to concrete age, the dynamic stress intensity factors of bond interface crack of concrete-rock was calculated. Result shows that the propagation of concreteinterface crack is mainly caused by tensile stress and shear stress for stress wave reflection. With the growth of concrete age, interface crack fracture toughness increases, and itscapacity of resisting blasting load strengthens. Therefore, blasting vibration should bestrictly controlled for fresh concrete.
基金We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grants 51374213 and 51674251), National Natural Science Fund for Distinguished Young Scholars of China (Grant 51125017), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant 51421003), Fund for Innovative Research and Development Group Program of Jiangsu Province (Grant 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant PAPD 2014).
文摘The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.
基金Project(50820125405)supported by the National Natural Science Foundation of ChinaProject(51121005)supported by the National Natural Science Foundation of China
文摘The cracking patterns of a thin sheet with a pre-existing crack subjected to dynamic loading are numerically simulated to investigate the mechanism of crack branching by using the FEM method.Six numerical models were set up to study the effects of load,tensile strength and heterogeneity on crack branching.The crack propagation is affected by the applied loads,tensile strength and heterogeneity.Before crack branching,the crack propagates by some distance along the direction of the pre-existing crack.For the materials with low heterogeneity,the higher the applied stress level is and the lower the tensile strength of the material is,the shorter the propagation distance is.Moreover,the branching angle becomes larger and the number of branching cracks increases.In the case of the materials with high heterogeneity,a lot of disordered voids and microcracks randomly occur along the main crack,so the former law is not obvious.The numerical results not only are in good agreement with the experimental observations in laboratory,but also can be extended to heterogeneity media.The work can provide a good approach to model the cracking and fracturing of heterogeneous quasi-brittle materials,such as rock,under dynamic loading.
基金The National Natural Science Foundation of China(No.50774056)Scientific Research Fund of Wuhan University of Science and Technology(No.080068)
文摘In the construction of water conservancy and hydropower project,young concrete lining structure is often affected by blasting load. Young concrete has a lot of micro-fractures with random distribution,which are easier to propagate and connect under blasting load. This paper focuses on the calculation on dynamic stress intensity factors of bond interface crack of concrete-rock according to concrete age. Result shows that different incidence angles of stress wave lead to different crack propagation mechanisms. Under the normal incidence of impact load,the bonding interface crack propagation of the concrete lining is mainly caused by reflection tensile stress,which forms from the free surface. With horizontal incidence of stress wave,the bond interface crack propagation of concrete lining is affected by concrete age. With the increase of concrete age,the elasticity modulus margin between concrete and rock decreases gradually,and the crack propagation form changes from shear failure to tensile damage.
基金Supported by the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences (No KZCX2-YW-211,KZCX3-SW-223)the National Natural Science Foundation of China (No 40830849)the Special Foundation for the Eleventh Five Plan of COMRA (No DYXM-115-02-1-03)
文摘The serpentinized peridotites overlying the subducted zones in the Izu-Bonin-Mariana(IBM) arc system have been interpret as the cause of the low-velocity layer identified beneath the IBM froearc,in turn few earthquakes occurred along the plate boundary.Chrysotile,which is a low temperature and highly hydrated phase of serpentine with low frictional strength,has been suggested as the low velocity material in the serpentinized peridotites,besides,brucite is inferred to be likely conducive to stable sliding.However,such idea encounters challenging in our serpentinized peridotites from the southern Mariana forearc,which absent both the above minerals.The presence of talc,which characterized by its weak,low-friction and inherently stable sliding behavior,provides new clue.Here we report the occurrence of talc in serpentinized peridotites collected from the landward trench slope of the southern Mariana forearc.We infer that talc is mainly forming as a result of the reaction of serpentine minerals with silica-saturated fluids released from the subducting slab,and talc also occurs as talc veins sometimes.Due to its unique physical properties,talc may therefore play a significant role in aseismic slip in the IBM subduction zone.
基金Supported by the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences (Nos.KZCX2-YW-211, KZCX3-SW-223)the National Natural Science Foundation of China (No.40830849)the Special Foundation for the Eleventh Five-Year Plan of COMRA (No.DYXM-115-02-1-03)
文摘Peridotites from the southern Mariana forearc were sampled on the landward trench slope of the Izu-Bonin-Mariana (IBM) subduction zone by dredging.These mantle wedge peridotites underwent hydration by fluid derived from a dehydrated descending slab,and later interacted with seawater after emplacement at or near the seafloor.This study investigates how these two different rock-fluid interaction processes influenced trace element distribution in the southern Mariana forearc peridotites.We measured trace element concentrations of peridotites from the southern Mariana forearc.The southern Mariana forearc peridotites are characterized by a distinct seawater-like REE pattern with an obvious negative Ce anomaly,and La shows good correlation with other REEs (except Ce).In addition,there is a great enrichment of U,Pb,Sr and Li elements,which show a distinct positive anomaly relative to adjacent elements in the multi-element diagram.For the seawater-like REE pattern,we infer that REEs are mainly influenced by seawater during peridotite-seawater interactions after their emplacement at or near the seafloor,by serpentinization or by marine weathering.Furthermore,the anomalous behavior of Ce,compared with other rare earth elements in these samples,may indicate that they have undergone reactions involving Ce (IV) when the peridotites interacted with seawater.Positive U,Pb,Sr and Li anomalies are inferred to be related to seawater and/or fluids released during dehydration of the subducting slab.
文摘Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Through cutting sand-cement grout samples, the spacing interval of boreholes can approach 17.5 times of the bore-hole' s diameter, and the result of the directional expansion of crack is satisfactory. The result of field experiment indicates cutting effect is very good, the ruggedness in fracture plane is less than 50 mm, the rate of half-hole marks is nearly 100 % , and the crack inspection shows that there is no damage in the internal of the cutting part. All these suggest that the orientation fracture blasting with LSC is a good means in directional fracture controlled blasting and is worth popularizing widely.
基金China Postdoctoral Science Foundation(20060400264)CSU Postdoctoral Science Foundationthe National Nature Science Foundation of China(50490274)
文摘The curves of crack relative length lib and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-torsion constant displacement load relaxa- tion method. The relations between crack relative length and the crack growth time were discussed under different stresses and different crack lengths. The results show that there is a turning point on curve of crack relative length lib and crack growth time of granite. The slope of curve is small when crack relative length is less than the vertical coordinate of the point, and crack grows stably in this case. Cracks grow, encounter and integrate catastro- phically when crack relative length is more than the vertical coordinate of the point, and there is not a gradual stage from crack stability growth to crack instability growth, i.e. rock mass instability is sudden. The curves of crack relative length lib and crack growth time t of granite move to right with decrease of stress σl or crack length a, which implies that limit time increases consequently. The results correspond to practicality.
文摘The article presents the results of study of composition, structure and properties of three genetic types of serpentinite, developed by chromite-bearing ultrabasic rocks, by metamorphic zones of carbonate rocks and within the zone of weathering of ultrabasic rocks. The samples were selected from deposits, located along the Main Ural Fault-the Paleozoic subduction zone (named GUR). Peculiarities of microstructure, chemical composition and properties of serpentinites formed in different geological conditions were investigated and their comparative study was held. They were devided three groups of serpentinites with oriented and non-oriented structure which formed by different protholites: mantle, lithosphere and crust.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.4109037341121002+2 种基金41103012 and 41173069)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB06030100)also by Postdoctoral Science Foundation of China(Grant No.2015M570735)
文摘The dependence of starting materials and their initial grain sizes on the formation of gases (H2, CH4, C2H6 and C3Hs) during serpentinization was investigated by conducting hydrothermal experiments at 311℃ and 3 kbar on olivine and peridotite with initial grain sizes ranging from 〈30 to 177 μm. Hydrocarbons (CH4, C2H6 and C3H8) were produced from reaction between dissolved CO2 in the starting fluids and HE formed during serpentinization, which were analyzed by Gas Chromatography. It was found that olivine serpentinization produced much less H2 and CH4 compared with those after peridotite alteration, while their C2H6 and C3H8 were identical. For example, for olivine with initial grain sizes of 〈30 μm, the amounts of HE and CH4 were 79.6 mmol/kg and 460 μmol/kg after 27 days, respectively. By contrast, the quantities of H2 and CH4 produced in experiment on peridotite with the same run duration were much larger, 119 mmol/kg and 1300 μmol/kg, respectively. This indicates that spinel and pyroxene in peridotite may increase the amounts of HE and hydrocarbons, possibly due to the catalytic effect of aluminum released by spinel and pyroxene during serpentinization. Moreover, the production of H2 and hydrocarbons is negatively correlated with initial grain sizes of the starting material, with smaller amounts of HE and hydrocarbons for larger initial grain sizes, indicating that the kinetics of serpentinization influences the formation of HE and hydrocarbons, possibly because of the lack of catalytic minerals for the starting material with larger grain sizes. This study suggests that olivine cannot completely represent peridotite during serpentinization, and that H2 and hydrocarbons in hydrothermal fields near the mid-ocean ridge may be produced in a very long period of serpentinization or the presence of catalytic minerals due to large grain sizes of ultramafic rocks.
基金supported by the National Natural Science Foundation of China(Grant Nos.41430962,41374073)the support from the Chinese Academy of Sciences
文摘Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes of serpentinites, samples from ODP Holes 897 D and 1070 A were investigated by integrating both magnetic and non-magnetic methods. Detailed rock magnetic results demonstrate that magnetite prevails in the entire serpentinite section, while maghemite is present in the upper and altered parts. The concentration of Fe in the fresh peridotite is inhomogeneous; nonetheless, the magnetic properties are generally determined by the serpentinization process. The formation and state of the magnetite depend on the fracture conditioning and fluid activities which are controlled by the serpentinization process. By comparing these two holes, we found that the production of magnetite is consistent with the serpentinization process; serpentinization is a multi-stage process which involves early high-temperature serpentinization and later low-temperature oxidation. As the serpentinization continues, the fine magnetic particles become coarser, combined with the formation of new SP particles, and the later low-temperature oxidation leads to the maghemitization of the magnetites. The duration of oxidation also contributes to the differences of remanent magnetization between these two holes. These results greatly improve our understanding of the magnetic enhancement during the serpentinization process, and provide constraints on the interpretation of the paleomagnetic and aeromagnetic anomalies in this area.