期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的纺织面料主成分分类
被引量:
7
1
作者
张玮
张华熊
《浙江理工大学学报(自然科学版)》
2019年第1期1-8,共8页
为自动检测纺织面料的主成分,以100~200倍放大后拍摄的纯纺面料或主成分含量在50%以上的混纺面料图像为研究对象,提出了一种基于深度卷积神经网络的纺织面料主成分分类方法。首先对纺织图像进行裁剪及颜色空间转换;然后将图像输入卷积...
为自动检测纺织面料的主成分,以100~200倍放大后拍摄的纯纺面料或主成分含量在50%以上的混纺面料图像为研究对象,提出了一种基于深度卷积神经网络的纺织面料主成分分类方法。首先对纺织图像进行裁剪及颜色空间转换;然后将图像输入卷积神经网络进行织物面料主成分分类训练;最后将待分类的纺织面料图像输入训练后的卷积神经网络中,得出纺织面料主成分分类结果。对棉、涤纶、腈纶、羊毛、天丝5类共4497张图像进行实验,实验结果显示:该方法对5类织物面料主成分分类准确率为96.53%;与其他卷积神经网络模型相比大幅降低了训练时间,减小了网络规模,提高了分类准确率。
展开更多
关键词
纺织面料成分分类
卷积神经网络
空洞卷积
深度可分离卷积
下载PDF
职称材料
题名
基于卷积神经网络的纺织面料主成分分类
被引量:
7
1
作者
张玮
张华熊
机构
浙江理工大学信息学院
出处
《浙江理工大学学报(自然科学版)》
2019年第1期1-8,共8页
基金
浙江省服装个性化定制协同创新中心项目(浙教高科[2016]63号)
浙江省重大科技专项重点社会发展项目(2015C03001)
文摘
为自动检测纺织面料的主成分,以100~200倍放大后拍摄的纯纺面料或主成分含量在50%以上的混纺面料图像为研究对象,提出了一种基于深度卷积神经网络的纺织面料主成分分类方法。首先对纺织图像进行裁剪及颜色空间转换;然后将图像输入卷积神经网络进行织物面料主成分分类训练;最后将待分类的纺织面料图像输入训练后的卷积神经网络中,得出纺织面料主成分分类结果。对棉、涤纶、腈纶、羊毛、天丝5类共4497张图像进行实验,实验结果显示:该方法对5类织物面料主成分分类准确率为96.53%;与其他卷积神经网络模型相比大幅降低了训练时间,减小了网络规模,提高了分类准确率。
关键词
纺织面料成分分类
卷积神经网络
空洞卷积
深度可分离卷积
Keywords
classification of main components of textile fabrics
convolutional neural network
dilated convolution
depthwise separable convolution
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
TS107 [轻工技术与工程—纺织工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的纺织面料主成分分类
张玮
张华熊
《浙江理工大学学报(自然科学版)》
2019
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部