随着万物互联和大数据时代的到来,通过线下交互数据追踪传染病患者的密切接触者,利用健康数据对密切接触者的健康状态进行持续监测,为传染病人际传播分析带来了新的研究视角,为阻断传染病的传播提供了新的处理方式。然而,此类方法也存...随着万物互联和大数据时代的到来,通过线下交互数据追踪传染病患者的密切接触者,利用健康数据对密切接触者的健康状态进行持续监测,为传染病人际传播分析带来了新的研究视角,为阻断传染病的传播提供了新的处理方式。然而,此类方法也存在较为严重的隐私泄露问题。为此,文章设计了基于线下交互和健康数据的传染病人际传播分析模型(Analysis Model of Human-to-Human Transmission of Infectious Diseases Based on Offline Interaction and Health Data,AMHHTID-OIHD)。该模型由可信机构、健康云服务器、交互云服务器、疾控中心、医院和用户6种实体组成,在支持隐私保护的同时实现CDC查找该患者的密切接触者并对其进行健康状态分类。文章以KNN分类和高斯朴素贝叶斯分类为基础,结合同态加密技术,设计了支持AMHHTID-OIHD的隐私保护密切接触者查找算法和隐私保护健康状态分类算法。最后,对该模型的安全性进行分析,结果表明该模型可以在保护隐私的情况下实现密切接触者查找和健康状态分类。展开更多
EBSN(Event-based Social Networks)与传统社交网络有所不同,它不仅包含传统社交网中的线上交互(Online Interactions),还包含颇具价值的线下交互(Offline Interactions),是一种异构型复杂社交网络。如何有效利用这种虚拟与物理相融合...EBSN(Event-based Social Networks)与传统社交网络有所不同,它不仅包含传统社交网中的线上交互(Online Interactions),还包含颇具价值的线下交互(Offline Interactions),是一种异构型复杂社交网络。如何有效利用这种虚拟与物理相融合的交互关系来提高活动推荐服务的质量,是目前学术界和工业界共同关注的热点研究问题之一。传统社交活动推荐算法,如基于用户偏好或线上好友关系的活动推荐算法,除了考虑活动和用户的基本属性外,大多基于显式好友关系EF(Explicit Friendship)进行活动推荐,但EBSN不具备显式好友关系,因此上述算法均不能直接用于EBSN活动推荐。为此,定义了一种新的潜在好友关系LF(Latent Friendship),LF关系将线上同组、线下同活动综合纳入活动评分计算中,以体现LF对EBSN活动推荐的影响;同时,基于此提出了一种基于潜在好友关系的EBSN活动推荐算法(Activity Recommendation Algorithm based on Latent Friendships,ARLF),该算法在寻找潜在好友关系时,创新性地运用元路径思想,使得EBSN中的异构信息得到了充分利用。最后,利用Meetup事件社交网中的真实数据对ARLF算法进行了性能测试,可扩展性实验证明了该算法是可行且有效的。展开更多
文摘随着万物互联和大数据时代的到来,通过线下交互数据追踪传染病患者的密切接触者,利用健康数据对密切接触者的健康状态进行持续监测,为传染病人际传播分析带来了新的研究视角,为阻断传染病的传播提供了新的处理方式。然而,此类方法也存在较为严重的隐私泄露问题。为此,文章设计了基于线下交互和健康数据的传染病人际传播分析模型(Analysis Model of Human-to-Human Transmission of Infectious Diseases Based on Offline Interaction and Health Data,AMHHTID-OIHD)。该模型由可信机构、健康云服务器、交互云服务器、疾控中心、医院和用户6种实体组成,在支持隐私保护的同时实现CDC查找该患者的密切接触者并对其进行健康状态分类。文章以KNN分类和高斯朴素贝叶斯分类为基础,结合同态加密技术,设计了支持AMHHTID-OIHD的隐私保护密切接触者查找算法和隐私保护健康状态分类算法。最后,对该模型的安全性进行分析,结果表明该模型可以在保护隐私的情况下实现密切接触者查找和健康状态分类。
文摘EBSN(Event-based Social Networks)与传统社交网络有所不同,它不仅包含传统社交网中的线上交互(Online Interactions),还包含颇具价值的线下交互(Offline Interactions),是一种异构型复杂社交网络。如何有效利用这种虚拟与物理相融合的交互关系来提高活动推荐服务的质量,是目前学术界和工业界共同关注的热点研究问题之一。传统社交活动推荐算法,如基于用户偏好或线上好友关系的活动推荐算法,除了考虑活动和用户的基本属性外,大多基于显式好友关系EF(Explicit Friendship)进行活动推荐,但EBSN不具备显式好友关系,因此上述算法均不能直接用于EBSN活动推荐。为此,定义了一种新的潜在好友关系LF(Latent Friendship),LF关系将线上同组、线下同活动综合纳入活动评分计算中,以体现LF对EBSN活动推荐的影响;同时,基于此提出了一种基于潜在好友关系的EBSN活动推荐算法(Activity Recommendation Algorithm based on Latent Friendships,ARLF),该算法在寻找潜在好友关系时,创新性地运用元路径思想,使得EBSN中的异构信息得到了充分利用。最后,利用Meetup事件社交网中的真实数据对ARLF算法进行了性能测试,可扩展性实验证明了该算法是可行且有效的。