A real-world localization system for wireless sensor networks that adapts for mobility and irregular radio propagation model is considered. The traditional range-based techniques and recent range-free localization sch...A real-world localization system for wireless sensor networks that adapts for mobility and irregular radio propagation model is considered. The traditional range-based techniques and recent range-free localization schemes are not well competent for localization in mobile sensor networks, while the probabilistic approach of Bayesian filtering with particle-based density representations provides a comprehensive solution to such localization problem. Monte Carlo localization is a Bayesian filtering method that approximates the mobile node's location by a set of weighted particles. In this paper, an enhanced Monte Carlo localization algorithm-Extended Monte Carlo Localization (Ext-MCL) is proposed, i.e., the traditional Monte Carlo localization algorithm is improved and extended to make it suitable for the practical wireless network environment where the radio propagation model is irregular. Simulation results show the proposal gets better localization accuracy and higher localizable node number than previously proposed Monte Carlo localization schemes not only for ideal radio model, but also for irregular one.展开更多
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a...A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.展开更多
This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadc...This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.展开更多
基金the National Natural Science Foundation of China (No.60671033)the Research Fund for the Doctoral Program of Higher Education (No.20060614015).
文摘A real-world localization system for wireless sensor networks that adapts for mobility and irregular radio propagation model is considered. The traditional range-based techniques and recent range-free localization schemes are not well competent for localization in mobile sensor networks, while the probabilistic approach of Bayesian filtering with particle-based density representations provides a comprehensive solution to such localization problem. Monte Carlo localization is a Bayesian filtering method that approximates the mobile node's location by a set of weighted particles. In this paper, an enhanced Monte Carlo localization algorithm-Extended Monte Carlo Localization (Ext-MCL) is proposed, i.e., the traditional Monte Carlo localization algorithm is improved and extended to make it suitable for the practical wireless network environment where the radio propagation model is irregular. Simulation results show the proposal gets better localization accuracy and higher localizable node number than previously proposed Monte Carlo localization schemes not only for ideal radio model, but also for irregular one.
基金Project(50925727) supported by the National Fund for Distinguish Young Scholars of ChinaProject(60876022) supported by the National Natural Science Foundation of China+1 种基金Project(2010FJ4141) supported by Hunan Provincial Science and Technology Foundation,ChinaProject supported by the Fund of the Key Construction Academic Subject (Optics) of Hunan Province,China
文摘A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.
基金supported by the National Natural Science Foundation of China under Grant No.61571452 and No.61201331
文摘This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.