In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
This paper studies the sensor selection problem for random field estimation in wireless sensor networks. The authors first prove that selecting a set of I sensors that minimize the estimation error under the D-optimal...This paper studies the sensor selection problem for random field estimation in wireless sensor networks. The authors first prove that selecting a set of I sensors that minimize the estimation error under the D-optimal criterion is NP-complete. The authors propose an iterative algorithm to pursue a suboptimal solution. Furthermore, in order to improve the bandwidth and energy efficiency of the wireless sensor networks, the authors propose a best linear unbiased estimator for a Gaussian random field with quantized measurements and study the corresponding sensor selection problem. In the case of unknown covariance matrix, the authors propose an estimator for the covariance matrix using measurements and also analyze the sensitivity of this estimator. Simulation results show the good performance of the proposed algorithms.展开更多
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
基金supported by the National Natural Science Foundation of China-Key Program under Grant No. 61032001the National Natural Science Foundation of China under Grant No.60828006
文摘This paper studies the sensor selection problem for random field estimation in wireless sensor networks. The authors first prove that selecting a set of I sensors that minimize the estimation error under the D-optimal criterion is NP-complete. The authors propose an iterative algorithm to pursue a suboptimal solution. Furthermore, in order to improve the bandwidth and energy efficiency of the wireless sensor networks, the authors propose a best linear unbiased estimator for a Gaussian random field with quantized measurements and study the corresponding sensor selection problem. In the case of unknown covariance matrix, the authors propose an estimator for the covariance matrix using measurements and also analyze the sensitivity of this estimator. Simulation results show the good performance of the proposed algorithms.