期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于红外量测信息的目标机动估计方法
1
作者 栗飞 王炎舜 龚铮 《指挥控制与仿真》 2019年第4期98-101,共4页
为改善红外导弹制导系统的设计性能,提出了一种目标机动估计算法。该方法利用红外导引头测角及飞行任务信息,通过量测信息转换,实现了Kalman滤波器对目标机动信息的估计。仿真结果表明,该方法易于工程实现,且具有较高的估计精度,能够满... 为改善红外导弹制导系统的设计性能,提出了一种目标机动估计算法。该方法利用红外导引头测角及飞行任务信息,通过量测信息转换,实现了Kalman滤波器对目标机动信息的估计。仿真结果表明,该方法易于工程实现,且具有较高的估计精度,能够满足红外制导的设计需求。 展开更多
关键词 卡尔曼滤波 机动目标追踪 线角速度 线偏差估计
下载PDF
A New Class of Biased Linear Estimators in Deficient-rank Linear Models 被引量:1
2
作者 归庆明 段清堂 +1 位作者 周巧云 郭建锋 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第1期71-78,共8页
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es... In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment. 展开更多
关键词 deficient_rank model best linear minimum bias estimator generalized principal components estimator mean squared error condition number
下载PDF
SENSOR SELECTION FOR RANDOM FIELD ESTIMATION IN WIRELESS SENSOR NETWORKS 被引量:2
3
作者 Yang WENG Lihua XIE Wendong XIAO 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第1期46-59,共14页
This paper studies the sensor selection problem for random field estimation in wireless sensor networks. The authors first prove that selecting a set of I sensors that minimize the estimation error under the D-optimal... This paper studies the sensor selection problem for random field estimation in wireless sensor networks. The authors first prove that selecting a set of I sensors that minimize the estimation error under the D-optimal criterion is NP-complete. The authors propose an iterative algorithm to pursue a suboptimal solution. Furthermore, in order to improve the bandwidth and energy efficiency of the wireless sensor networks, the authors propose a best linear unbiased estimator for a Gaussian random field with quantized measurements and study the corresponding sensor selection problem. In the case of unknown covariance matrix, the authors propose an estimator for the covariance matrix using measurements and also analyze the sensitivity of this estimator. Simulation results show the good performance of the proposed algorithms. 展开更多
关键词 BLUE covarianee matrix exchange algorithm NP-COMPLETENESS QUANTIZATION random field sensor selection.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部