In this work, the Au/ZnO hybrid microstructure was fabricated by assembling Au nanoparticles(NPs) onto the surface of ZnO microrods, and an obviously improved ultraviolet(UV) emission of ZnO is observed in the hybrid ...In this work, the Au/ZnO hybrid microstructure was fabricated by assembling Au nanoparticles(NPs) onto the surface of ZnO microrods, and an obviously improved ultraviolet(UV) emission of ZnO is observed in the hybrid microstructure. About 27-fold enhancement ratio of the UV emission to the green band emission of ZnO is achieved. The underlying enhanced mechanism of the UV emission intensities can be ascribed to the charge transfer and the efficient coupling between ZnO excitons and Au surface plasmon(SP).展开更多
基金supported by the National Natural Science Foundation of China(No.U1404824)the Science&Technology Agency of Henan Province(No.142107000023)the Young Scientists Fund of Henan University of Science and Technology(No.09001635)
文摘In this work, the Au/ZnO hybrid microstructure was fabricated by assembling Au nanoparticles(NPs) onto the surface of ZnO microrods, and an obviously improved ultraviolet(UV) emission of ZnO is observed in the hybrid microstructure. About 27-fold enhancement ratio of the UV emission to the green band emission of ZnO is achieved. The underlying enhanced mechanism of the UV emission intensities can be ascribed to the charge transfer and the efficient coupling between ZnO excitons and Au surface plasmon(SP).