Considering the difference in driving parameters of buses and social vehicles on the arterial,an arterial traffic signal coordination model that takes into account social vehicles and buses on the basis of the maximum...Considering the difference in driving parameters of buses and social vehicles on the arterial,an arterial traffic signal coordination model that takes into account social vehicles and buses on the basis of the maximum bandwidth is proposed.By using the pre-set parameters of a common cycle,green/red duration and known parameters of bus dwell time distribution,link length and vehicle speed and solving the mixed-integer-linear programming and optimizing the signal offsets,the model obtains the signal control parameters of the green bands both of social vehicles and buses.Finally,taking Wangjiang Road in Hefei as an example,simulation and evaluation are carried out by VISSIM.The results show that the new model has 15.2%and 13.2%reduction in average person delay and number of stops,respectively,compared with the traditional coordinated control method.展开更多
To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studie...To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studied in the framework of bus coordination dispatching mode. Firstly, the bus coordination holding control flow was studied based on Advanced Public Transportation Systems (APTS) environment. Then a control model was presented to optimize the bus vehicle holding time, and a genetic algorithm was designed as the solving method. In the end, an example was given to illustrate the effectiveness of the control strategy and the algorithm.展开更多
This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among mul...This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.展开更多
In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel ada...In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.展开更多
基金The National Natural Science Foundation of China(No.51878236)。
文摘Considering the difference in driving parameters of buses and social vehicles on the arterial,an arterial traffic signal coordination model that takes into account social vehicles and buses on the basis of the maximum bandwidth is proposed.By using the pre-set parameters of a common cycle,green/red duration and known parameters of bus dwell time distribution,link length and vehicle speed and solving the mixed-integer-linear programming and optimizing the signal offsets,the model obtains the signal control parameters of the green bands both of social vehicles and buses.Finally,taking Wangjiang Road in Hefei as an example,simulation and evaluation are carried out by VISSIM.The results show that the new model has 15.2%and 13.2%reduction in average person delay and number of stops,respectively,compared with the traditional coordinated control method.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 70601022)the National Basic Research Program of China (Grant No.2006CB705505)
文摘To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studied in the framework of bus coordination dispatching mode. Firstly, the bus coordination holding control flow was studied based on Advanced Public Transportation Systems (APTS) environment. Then a control model was presented to optimize the bus vehicle holding time, and a genetic algorithm was designed as the solving method. In the end, an example was given to illustrate the effectiveness of the control strategy and the algorithm.
基金Sponsored by the Indiana 21stCentury Research and Technology Fund
文摘This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.
基金supported by the National Natural Science Foundation of China(Grant Nos.61304193&U1564208)National Key R&D Program of China(Grant No.2016YFB0100900)
文摘In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.