An up-conversion mixer implemented in a 0.35μm SiGe BiCMOS technology for a double conversion cable TV tuner is described, The mixer converts the 100MHz to 1000MHz band to the Intermediate Frequency of 1GHz above. Th...An up-conversion mixer implemented in a 0.35μm SiGe BiCMOS technology for a double conversion cable TV tuner is described, The mixer converts the 100MHz to 1000MHz band to the Intermediate Frequency of 1GHz above. The mixer meets the linearity and noise figure requirements for a TV tuner. The noise figure (IF) of 19.2-17.5dB, ldB compression of 12.1dBm, and gain of-1-0.7dB in the 900MHz band are achieved at a supply voltage of 5V. The power consumption is 47mW.展开更多
Polarized upconversion luminescence(UCL)of lanthanide-doped micro/nano-crystals has shown great promise in single-particle tracking and super-resolution bioimaging.However,because of the spectral line broadening and m...Polarized upconversion luminescence(UCL)of lanthanide-doped micro/nano-crystals has shown great promise in single-particle tracking and super-resolution bioimaging.However,because of the spectral line broadening and multiple sites of lanthanide in upconversion particles(UCPs),the crystal-field(CF)polarization components of UCL are usually undistinguishable.Herein,we report the linearly polarized UCL in LiLuF_(4):Yb^(3+)/Er^(3+) single microcrystals with resolvable CF transition lines and a polarization degree up to 0.82.The CF levels and CF transition lines of Er^(3+),as well as their emission polarization anisotropy,are unraveled for the first time through low-temperature and high-resolution photoluminescence(PL)and UCL spectroscopies.By taking advantage of the well-resolved and highly-polarized CF transition lines of Er^(3+),we demonstrate the application of LiLuF_(4):Yb^(3+)/Er^(3+) single microcrystals as anisotropic UCL probes for orientation tracking.These findings provide fundamental insights into the polarization anisotropy of UCL in lanthanide-doped single particles,thus laying a foundation for the future design of anisotropic luminescent probes towards versatile applications.展开更多
基金Supported by the National Natural Science Foundation of China (No.90207008).
文摘An up-conversion mixer implemented in a 0.35μm SiGe BiCMOS technology for a double conversion cable TV tuner is described, The mixer converts the 100MHz to 1000MHz band to the Intermediate Frequency of 1GHz above. The mixer meets the linearity and noise figure requirements for a TV tuner. The noise figure (IF) of 19.2-17.5dB, ldB compression of 12.1dBm, and gain of-1-0.7dB in the 900MHz band are achieved at a supply voltage of 5V. The power consumption is 47mW.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS,XDB20000000)the National Natural Science Foundation of China(U1805252,21875250,11774345,12074379,21771185,12074380,and 21975257)+1 种基金the Youth Innovation Promotion Association of the CAS(2020305)the Natural Science Foundation of Fujian Province(2020I0037).
文摘Polarized upconversion luminescence(UCL)of lanthanide-doped micro/nano-crystals has shown great promise in single-particle tracking and super-resolution bioimaging.However,because of the spectral line broadening and multiple sites of lanthanide in upconversion particles(UCPs),the crystal-field(CF)polarization components of UCL are usually undistinguishable.Herein,we report the linearly polarized UCL in LiLuF_(4):Yb^(3+)/Er^(3+) single microcrystals with resolvable CF transition lines and a polarization degree up to 0.82.The CF levels and CF transition lines of Er^(3+),as well as their emission polarization anisotropy,are unraveled for the first time through low-temperature and high-resolution photoluminescence(PL)and UCL spectroscopies.By taking advantage of the well-resolved and highly-polarized CF transition lines of Er^(3+),we demonstrate the application of LiLuF_(4):Yb^(3+)/Er^(3+) single microcrystals as anisotropic UCL probes for orientation tracking.These findings provide fundamental insights into the polarization anisotropy of UCL in lanthanide-doped single particles,thus laying a foundation for the future design of anisotropic luminescent probes towards versatile applications.