Longwall mining continues to remain the most efficient method for underground coal recovery. A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned w...Longwall mining continues to remain the most efficient method for underground coal recovery. A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam. At present, this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer's cutting drum position to infer the geological trends of the coal seam. This is a labour intensive task which has negative impacts on the consistency and quality of coal production. As a solution to this problem, this paper presents a sensing method to automatically track geological coal seam features on the longwall face, known as marker bands, using thermal infrared imaging. These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams. Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction. Details on the theory of thermal infrared imaging are given, as well as practical aspects associated with machine-based implementation underground. The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach. The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network t...The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network topology for a multi-tier Heterogeneous Network(Het Net) and ultra-dense network is proposed. The FNA network topology modeling is researched with centralized processing and distributed antenna deployments. The Antenna Element(AE) is released as a new dimensional radio resource that is included in the centralized Radio Resource Management(RRM) processes. This contributes to the on-demand user-centric serving-set associations with cell-edge effect elimination. The Control Plane(CP) and User Plane(UP) separation and adaptation are introduced for energy efficiency improvements. The centralized RRM and different optimization goals are discussed for fully exploring the merits from the centralized computing of C-RAN. Considering the complexity, near-optimal approaches for specific users' Quality-of-Service(Qo S) requirements are addressed. Finally, based on the research highlighted above, the way forward of C-RAN evolution is discussed.展开更多
The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was de...The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.展开更多
This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the ...This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.展开更多
A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF plan...A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).展开更多
Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a ...Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.展开更多
The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta...The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.展开更多
Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions ...Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions than other operation modes. Nonlinear oscillation in continuous industrial crystallization processes is a well-known phenomenon leading to practical difficulties such that control actions are necessary. Nonlinear oscillation is a consequence of the highly nonlinear kinetics, different feedbacks between the variables and elementary processes taking place in crystallizers units, and the non-equilibrium thermodynamic operation. In this paper the control of a continuous crystallizer model that displays oscillatory behavior is addressed via two practical robust control approaches: (i) modeling error compensation, and (ii) integral high order sliding mode control. The controller designs are based on the reduced-order model representation of the population balance equations resulting after the application of the method of moments. Numerical simulations show good closed-loop performance and robustness properties展开更多
This paper addresses to the problem of designing, modeling and practical realization of robust model predictive control for finite and infinite prediction horizon which ensures a parameter dependent quadratic stabilit...This paper addresses to the problem of designing, modeling and practical realization of robust model predictive control for finite and infinite prediction horizon which ensures a parameter dependent quadratic stability and guaranteed cost for linear polytopic uncertain systems. The model predictive controller design procedure based on BMI and LMI is reduced to off-line output feedback gain calculation. A numerical examples and an application to a real process is given to illustrate the effectiveness of the proposed method.展开更多
基金the Australian Coal Association Research Program(ACARP)for their invaluable support that enabled new research and development into longwall shearer automation
文摘Longwall mining continues to remain the most efficient method for underground coal recovery. A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam. At present, this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer's cutting drum position to infer the geological trends of the coal seam. This is a labour intensive task which has negative impacts on the consistency and quality of coal production. As a solution to this problem, this paper presents a sensing method to automatically track geological coal seam features on the longwall face, known as marker bands, using thermal infrared imaging. These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams. Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction. Details on the theory of thermal infrared imaging are given, as well as practical aspects associated with machine-based implementation underground. The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach. The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
基金supported by the National High Technology Research and Development Program of China No.2014AA01A701Nature and Science Foundation of China under Grants No.61471068,61421061+2 种基金Beijing Nova Programme No.Z131101000413030International Collaboration Project No.2015DFT10160National Major Project No.2016ZX03001009-003
文摘The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network topology for a multi-tier Heterogeneous Network(Het Net) and ultra-dense network is proposed. The FNA network topology modeling is researched with centralized processing and distributed antenna deployments. The Antenna Element(AE) is released as a new dimensional radio resource that is included in the centralized Radio Resource Management(RRM) processes. This contributes to the on-demand user-centric serving-set associations with cell-edge effect elimination. The Control Plane(CP) and User Plane(UP) separation and adaptation are introduced for energy efficiency improvements. The centralized RRM and different optimization goals are discussed for fully exploring the merits from the centralized computing of C-RAN. Considering the complexity, near-optimal approaches for specific users' Quality-of-Service(Qo S) requirements are addressed. Finally, based on the research highlighted above, the way forward of C-RAN evolution is discussed.
基金the financial supports from the National Natural Science Foundation of China(No.52005244)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.18B285,18B552)+1 种基金the Natural Science Foundation of Hunan Provincial,China(Nos.2019JJ50510,2019JJ70077)Young Scholars Program of Furong Scholar Program,China.
文摘The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.
基金partially supported by the National Natural Science Foundation of China under Grant No.61172073the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2012D19+1 种基金the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University under Grant No.2013JBZ01the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-12-0766
文摘This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.
基金Project(20102304120007) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(QC2010009)supported by the Natural Science Foundation of Heilongjiang Province, China+1 种基金Projects(20110491030, LBH-Z10219) supported by China Postdoctoral Science FoundationProject(HEUCF120706) supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z245)the Program for Changjiang Scholars and Innovative Research Team in University ( No. IRT0423)the Fund for Foreign Scholars in University Research and Teaching Programs (No. B07018)
文摘Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.
基金Projects(61074112,60674044) supported by the National Natural Science Foundation of China
文摘The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.
文摘Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions than other operation modes. Nonlinear oscillation in continuous industrial crystallization processes is a well-known phenomenon leading to practical difficulties such that control actions are necessary. Nonlinear oscillation is a consequence of the highly nonlinear kinetics, different feedbacks between the variables and elementary processes taking place in crystallizers units, and the non-equilibrium thermodynamic operation. In this paper the control of a continuous crystallizer model that displays oscillatory behavior is addressed via two practical robust control approaches: (i) modeling error compensation, and (ii) integral high order sliding mode control. The controller designs are based on the reduced-order model representation of the population balance equations resulting after the application of the method of moments. Numerical simulations show good closed-loop performance and robustness properties
文摘This paper addresses to the problem of designing, modeling and practical realization of robust model predictive control for finite and infinite prediction horizon which ensures a parameter dependent quadratic stability and guaranteed cost for linear polytopic uncertain systems. The model predictive controller design procedure based on BMI and LMI is reduced to off-line output feedback gain calculation. A numerical examples and an application to a real process is given to illustrate the effectiveness of the proposed method.