We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangula...We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangular thin plate and the ex-pressions of electromagnetic forces,the vibration equations are derived for the mechanical loading in a steady transverse magnetic field.Using the Melnikov function method,the criteria are obtained for chaos motion to exist as demonstrated by the Smale horseshoe mapping.The vibration equations are solved numerically by a fourth-order Runge-Kutta method.Its bifurcation dia-gram,Lyapunov exponent diagram,displacement wave diagram,phase diagram and Poincare section diagram are obtained.展开更多
基金Project(No. A2006000190)supported by the Natural Science Foundation of Hebei Province,China
文摘We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangular thin plate and the ex-pressions of electromagnetic forces,the vibration equations are derived for the mechanical loading in a steady transverse magnetic field.Using the Melnikov function method,the criteria are obtained for chaos motion to exist as demonstrated by the Smale horseshoe mapping.The vibration equations are solved numerically by a fourth-order Runge-Kutta method.Its bifurcation dia-gram,Lyapunov exponent diagram,displacement wave diagram,phase diagram and Poincare section diagram are obtained.