Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which uti...Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.展开更多
Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polyg...Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polygons.Based on the Biot-Savart law,the method calculates mutual inductance by dividing a polygonal coil into finite wires,and expresses the magnetic induction intensity generated by the excitation coil as a function of the spatial position of each vertex of the coil.The calculation method of the feasible region of the objective function is updated and the calculation process is simplified,so the calculation accuracy is improved.For octagon coils arbitrarily positioned in space,the accuracy of the algorithm is verified by the simulation and experiment.展开更多
Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quant...Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quantitatively monitor the crack characteristics near the bolt hole with fewer layers and coils,compared with the existing methods.The parallelogram coil array configuration is designed and optimized to improve the quantitative monitoring ability of the crack.A 3×3 parallelogram coil array is used to quantify the crack parameters of aluminum bolted joints.Finite element simulation and experiments show that the proposed parallelogram coil array could not only accurately and quantitatively identify the crack angle at the edge of the bolt hole,but also track the crack length along the radial direction of the bolt hole and the depth along the axial direction.展开更多
Studying the interaction of components is basic for a railroad project, which is also very important for creating maintenance procedures based on predictions from a model that assumes adequate performance. To determin...Studying the interaction of components is basic for a railroad project, which is also very important for creating maintenance procedures based on predictions from a model that assumes adequate performance. To determine these interactions, which can have a great number of combinations, the use of a computational model is of vital importance, in this case, the program FERROVIA 1.0 (RAILROAD 1.0) was used. A critical study developed the program FERROVIA 1.0, and its variables were characterized based on values observed in the literature. After initial characterization was carried out, a comparative study was performed on the sensitivity between these variables and the indications of significant behavior for a railway deformed by the known load of a wheel. A statistical program was used to correlate the elements. The intention was to launch the program FERROVIA 1.0 and later use it for 2,187 combinations. The data used in these correlations corresponded to the normal values for the elements used in railroad engineering practice. Our main goal is to understand the behavior of the track vertical deflection according to the variation of the scaling of the various elements of the railway,展开更多
One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic ...One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic search require a known type of load and relatively long computational time, which limits the practical use of AS in civil engineering. Moreover, additive errors may be produced because of the discrepancy between analytic models and real structures. To overcome these limitations, this paper presents a compound system called WAS, which combines AS with a wireless sensor and actuator network (WSAN). A bio-inspired control framework imitating the activity of the nervous systems of animals is proposed for WAS. A typical example is tested for verification. In the example, a triangular tensegrity prism that aims to maintain its original height is integrated with a WSAN that consists of a central controller, three actuators, and three sensors. The result demonstrates the feasibility of the proposed concept and control framework in cases of unknown loads that include different types, distributions, magnitudes, and directions. The proposed control framework can also act as a supplementary means to improve the efficiency and accuracy of control frameworks based on a common stochastic search.展开更多
According to previous studies,stiffened shells with convex hyperbolic generatrix shape are less sensitive to imperfections.In this study,the effects of generatrix shape on the performances of elastic and plastic buckl...According to previous studies,stiffened shells with convex hyperbolic generatrix shape are less sensitive to imperfections.In this study,the effects of generatrix shape on the performances of elastic and plastic buckling in stiffened shells are investigated.Then,a more general description of generatrix shape is proposed,which can simply be expressed as a convex B-spline curve(controlled by four key points).An optimization framework of stiffened shells with a convex B-spline generatrix is established,with optimization objective being measured in terms of nominal collapse load,which can be expressed as a weighted sum of geometrically imperfect shells.The effectiveness of the proposed framework is demonstrated by a detailed comparison of the optimum designs for the B-spline and hyperbolic generatrix shapes.The decrease of imperfection sensitivity allows for a significant weight saving,which is particularly important in the development of future heavy-lift launch vehicles.展开更多
基金Supported by the Important National Science and Technology Specific Project of China(No.20112X03002-002-03)the National NatureScience Foundation of China(No.61133016,61163066)
文摘Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.
文摘Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polygons.Based on the Biot-Savart law,the method calculates mutual inductance by dividing a polygonal coil into finite wires,and expresses the magnetic induction intensity generated by the excitation coil as a function of the spatial position of each vertex of the coil.The calculation method of the feasible region of the objective function is updated and the calculation process is simplified,so the calculation accuracy is improved.For octagon coils arbitrarily positioned in space,the accuracy of the algorithm is verified by the simulation and experiment.
基金supported by the Natural Science Foundation of China(No.11902280)Aeronautical Science Fund(No.20200033068001)+1 种基金Innovation Fosundation for Young Scholar of Xiamen(No.3502Z20206042)the Fundamental Research Funds for the Central Universities(No.20720210049)。
文摘Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quantitatively monitor the crack characteristics near the bolt hole with fewer layers and coils,compared with the existing methods.The parallelogram coil array configuration is designed and optimized to improve the quantitative monitoring ability of the crack.A 3×3 parallelogram coil array is used to quantify the crack parameters of aluminum bolted joints.Finite element simulation and experiments show that the proposed parallelogram coil array could not only accurately and quantitatively identify the crack angle at the edge of the bolt hole,but also track the crack length along the radial direction of the bolt hole and the depth along the axial direction.
文摘Studying the interaction of components is basic for a railroad project, which is also very important for creating maintenance procedures based on predictions from a model that assumes adequate performance. To determine these interactions, which can have a great number of combinations, the use of a computational model is of vital importance, in this case, the program FERROVIA 1.0 (RAILROAD 1.0) was used. A critical study developed the program FERROVIA 1.0, and its variables were characterized based on values observed in the literature. After initial characterization was carried out, a comparative study was performed on the sensitivity between these variables and the indications of significant behavior for a railway deformed by the known load of a wheel. A statistical program was used to correlate the elements. The intention was to launch the program FERROVIA 1.0 and later use it for 2,187 combinations. The data used in these correlations corresponded to the normal values for the elements used in railroad engineering practice. Our main goal is to understand the behavior of the track vertical deflection according to the variation of the scaling of the various elements of the railway,
基金Project supported by the National Key Technology R&D Program of China(No.2012BAJ07B03)the National Natural Science Foundation of China(Nos.51178415 and 51578491)
文摘One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic search require a known type of load and relatively long computational time, which limits the practical use of AS in civil engineering. Moreover, additive errors may be produced because of the discrepancy between analytic models and real structures. To overcome these limitations, this paper presents a compound system called WAS, which combines AS with a wireless sensor and actuator network (WSAN). A bio-inspired control framework imitating the activity of the nervous systems of animals is proposed for WAS. A typical example is tested for verification. In the example, a triangular tensegrity prism that aims to maintain its original height is integrated with a WSAN that consists of a central controller, three actuators, and three sensors. The result demonstrates the feasibility of the proposed concept and control framework in cases of unknown loads that include different types, distributions, magnitudes, and directions. The proposed control framework can also act as a supplementary means to improve the efficiency and accuracy of control frameworks based on a common stochastic search.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2014CB049000,2014CB046596)the National Natural Science Foundation of China(Grant Nos.11402049,11372062)+2 种基金the Project funded by China Postdoctoral Science Foundation(Grant No.2014M551070)the Fundamental Research Funds for Central University of China(Grant No.DUT14RC(3)028)the"111"Program(Grant No.B14013)
文摘According to previous studies,stiffened shells with convex hyperbolic generatrix shape are less sensitive to imperfections.In this study,the effects of generatrix shape on the performances of elastic and plastic buckling in stiffened shells are investigated.Then,a more general description of generatrix shape is proposed,which can simply be expressed as a convex B-spline curve(controlled by four key points).An optimization framework of stiffened shells with a convex B-spline generatrix is established,with optimization objective being measured in terms of nominal collapse load,which can be expressed as a weighted sum of geometrically imperfect shells.The effectiveness of the proposed framework is demonstrated by a detailed comparison of the optimum designs for the B-spline and hyperbolic generatrix shapes.The decrease of imperfection sensitivity allows for a significant weight saving,which is particularly important in the development of future heavy-lift launch vehicles.