A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, ...A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.展开更多
An on-line path planning algorithm based on Bezier curves is presented for underwater vehicles. Aiming at the special requirements of underwater vehicles and 3D enviromnent, the algorithm consists of two steps : the ...An on-line path planning algorithm based on Bezier curves is presented for underwater vehicles. Aiming at the special requirements of underwater vehicles and 3D enviromnent, the algorithm consists of two steps : the generation of spatial path and the processing of some constraints. A path for underwater vehicles is planned, which satisfies the velocity constraint and the centripetal acceleration constraint of underwater vehicles. The proposed path planning method can be used for the vehicle' s locomotion and navigation control.展开更多
Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which uti...Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.展开更多
文摘A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.
基金Supported by the National High Technology Research and Development Programme of China(No. 2006AAllZ225) and the National Natural Science Foundation of China (No. 60605026, 60635010).
文摘An on-line path planning algorithm based on Bezier curves is presented for underwater vehicles. Aiming at the special requirements of underwater vehicles and 3D enviromnent, the algorithm consists of two steps : the generation of spatial path and the processing of some constraints. A path for underwater vehicles is planned, which satisfies the velocity constraint and the centripetal acceleration constraint of underwater vehicles. The proposed path planning method can be used for the vehicle' s locomotion and navigation control.
基金Supported by the Important National Science and Technology Specific Project of China(No.20112X03002-002-03)the National NatureScience Foundation of China(No.61133016,61163066)
文摘Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.