The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi...A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.展开更多
Using the sign-invariant theory, we study the nonlinear reaction-diffusion systems. We also obtain some new explicit solutions to the nonlinear resulting systems.
The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including sat...The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.展开更多
Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system o...Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.展开更多
Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization ...Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.展开更多
In this paper,applying the concept of generalized KKM map,we study problems of variational inequalities.We weaken convexity(concavity)conditions for a functional of two variables ■(x,y)in the general variational ineq...In this paper,applying the concept of generalized KKM map,we study problems of variational inequalities.We weaken convexity(concavity)conditions for a functional of two variables ■(x,y)in the general variational inequalities.Last,we show a proof of non-topological degree meth- od of acute angle principle about monotone operator as an application of these results.展开更多
The top-pair production in association with a Z^0-boson at a photon-photon collider is an important process in probing the coupling between top-quarks and vector boson and discovering the signature of possible new phy...The top-pair production in association with a Z^0-boson at a photon-photon collider is an important process in probing the coupling between top-quarks and vector boson and discovering the signature of possible new physics. We describe the impact of the complete supersymmetric QCD (SQCD) next-to-leading order (NLO) radiative corrections on this process at a polarized or unpolarized photon collider, and make a comparison between the effects of the SQCD and the standard model (SM) QCD. We investigate the dependence of the lowest-order (LO) and QCD NLO corrected cross sections in both the SM and minimal supersymmetric standard model (MSSM) on colliding energy √s in different polarized photon collision modes. The LO, SM NLO, and SQCD NLO corrected distributions of the invariant mass of tt^--pair and the transverse momenta of final Z^0-boson are presented. Our numerical results show that the pure SQCD effects in γγ →tt^- Z^0 process can be more significant in the ++ polarized photon collision mode than in other collision modes, and the relative SQCD radiative correction in unpolarized photon collision mode varies from 32.09% to -1.89% when √s goes up from 500 GeV to 1.5 TeV.展开更多
We study a class of discounted models of singular stochastic control. In thiskind of models, not only the structure of cost function has been extended to some general type, butalso the state can be represented as the ...We study a class of discounted models of singular stochastic control. In thiskind of models, not only the structure of cost function has been extended to some general type, butalso the state can be represented as the solution of a class of stochastic differential equationswith nonlinear drift and diffusion term. By the various methods of stochastic analysis, we derivethe sufficient and necessary conditions of the existence of optimal control.展开更多
The uncertainty influences may result in performance deterioration and instability to the steer by wire(SBW) system. Thus, it must make the control system keep robust stability from uncertainty, and have good robustne...The uncertainty influences may result in performance deterioration and instability to the steer by wire(SBW) system. Thus, it must make the control system keep robust stability from uncertainty, and have good robustness. In order to effectively restrain the interference and improve steering stability, this paper presents a μ synthesis robust controller based on SBW system, which considers the effect of model uncertainty and external disturbance on the system dynamics. Taking the ideal yaw rate tracking, interference suppression and excellent robustness as the control objectives, the μ synthesis robust controller is designed using linear fractional transformation theory to deal with the uncertainty. Then, it is testified through time domain and robustness simulation analysis. Simulation results show that the proposed controller can not only ensure robustness and robust stability of the system quite well, but improve handling stability of the vehicle effectively. The results of this study provide certain theoretical basis for the research and application of SBW system.展开更多
This paper presents a gain-scheduling model predictive control(MPC) for linear parameter varying(LPV) systems subject to actuator saturation. The proposed gain-scheduling MPC algorithm is then applied to the lateral c...This paper presents a gain-scheduling model predictive control(MPC) for linear parameter varying(LPV) systems subject to actuator saturation. The proposed gain-scheduling MPC algorithm is then applied to the lateral control of unmanned airship.The unmanned airship is modeled by an LPV-type system and transformed into a polytopic uncertain description with actuator saturation. By introducing a parameter-dependent state feedback law, the set invariance condition of the polytopic uncertain system is identified. Based on the invariant set, the gain-scheduling MPC controller is presented by solving a linear matrix inequality(LMI) optimization problem. The proposed gain-scheduling MPC algorithm is demonstrated by simulating on the unmanned airship system.展开更多
This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variati...This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variational inequality into a nonlinear parabolic initial boundary problem(i.e., penalty problem). Second, the existence and uniqueness of solution to the penalty problem are proved by using the Scheafer fixed point theory. Third, the authors prove the existence of variational inequality' solution by showing the fact that the penalized PDE converges to the variational inequality. The uniqueness of solution to the variational inequality is also proved by contradiction.展开更多
Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of indepen...Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng(2008),we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations.As an application,we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed random variables under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite.展开更多
This paper is concerned with high-order neural networks with proportional delays. The proportional delay is a time-varying unbounded delay which is different from the constant delay, bounded time-varying delay and dis...This paper is concerned with high-order neural networks with proportional delays. The proportional delay is a time-varying unbounded delay which is different from the constant delay, bounded time-varying delay and distributed delay. By the nonlinear transformation yi(t) = ui( et)(i = 1, 2,..., n), we transform a class of high-order neural networks with proportional delays into a class of high-order neural networks with constant delays and timevarying coefficients. With the aid of Brouwer fixed point theorem and constructing the delay differential inequality, we obtain some delay-independent and delay-dependent sufficient conditions to ensure the existence, uniqueness and global exponential stability of equilibrium of the network. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.展开更多
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.
基金Project(61473304)supported by the National Natural Science Foundation of ChinaProject(2015AA042202)supported by Hi-tech Research and Development Program of China
文摘A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘Using the sign-invariant theory, we study the nonlinear reaction-diffusion systems. We also obtain some new explicit solutions to the nonlinear resulting systems.
基金The work was supported by the National Natural Science Foundation of China(No.11571171)。
文摘The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.
基金Project(51007042)supported by the National Natural Science Foundation of China
文摘Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.
基金Project(61374054)supported by the National Natural Science Foundation of ChinaProject(2013JQ8038)supported by the Shanxi Provincal Natural Science Foundation Research Projection,China
文摘Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.
文摘In this paper,applying the concept of generalized KKM map,we study problems of variational inequalities.We weaken convexity(concavity)conditions for a functional of two variables ■(x,y)in the general variational inequalities.Last,we show a proof of non-topological degree meth- od of acute angle principle about monotone operator as an application of these results.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.10575094 and 10875112the National Science Fund for Fostering Talents in Basic Science under Grant No.J0630319+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No.20050358063a Special Fund Sponsored by Chinese Academy of Sciences
文摘The top-pair production in association with a Z^0-boson at a photon-photon collider is an important process in probing the coupling between top-quarks and vector boson and discovering the signature of possible new physics. We describe the impact of the complete supersymmetric QCD (SQCD) next-to-leading order (NLO) radiative corrections on this process at a polarized or unpolarized photon collider, and make a comparison between the effects of the SQCD and the standard model (SM) QCD. We investigate the dependence of the lowest-order (LO) and QCD NLO corrected cross sections in both the SM and minimal supersymmetric standard model (MSSM) on colliding energy √s in different polarized photon collision modes. The LO, SM NLO, and SQCD NLO corrected distributions of the invariant mass of tt^--pair and the transverse momenta of final Z^0-boson are presented. Our numerical results show that the pure SQCD effects in γγ →tt^- Z^0 process can be more significant in the ++ polarized photon collision mode than in other collision modes, and the relative SQCD radiative correction in unpolarized photon collision mode varies from 32.09% to -1.89% when √s goes up from 500 GeV to 1.5 TeV.
基金This research is supported by the National Natural Science Foundation of China
文摘We study a class of discounted models of singular stochastic control. In thiskind of models, not only the structure of cost function has been extended to some general type, butalso the state can be represented as the solution of a class of stochastic differential equationswith nonlinear drift and diffusion term. By the various methods of stochastic analysis, we derivethe sufficient and necessary conditions of the existence of optimal control.
基金supported by the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(Grant Nos.SKLMT-KFKT-2014010&SKLMT-KFKT-201507)the National Natural Science Foundation of China(Grant Nos.51375007&51605219)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.NE2016002)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2015022352)
文摘The uncertainty influences may result in performance deterioration and instability to the steer by wire(SBW) system. Thus, it must make the control system keep robust stability from uncertainty, and have good robustness. In order to effectively restrain the interference and improve steering stability, this paper presents a μ synthesis robust controller based on SBW system, which considers the effect of model uncertainty and external disturbance on the system dynamics. Taking the ideal yaw rate tracking, interference suppression and excellent robustness as the control objectives, the μ synthesis robust controller is designed using linear fractional transformation theory to deal with the uncertainty. Then, it is testified through time domain and robustness simulation analysis. Simulation results show that the proposed controller can not only ensure robustness and robust stability of the system quite well, but improve handling stability of the vehicle effectively. The results of this study provide certain theoretical basis for the research and application of SBW system.
基金supported by the National Natural Science Fundation of China(6117507411272205)
文摘This paper presents a gain-scheduling model predictive control(MPC) for linear parameter varying(LPV) systems subject to actuator saturation. The proposed gain-scheduling MPC algorithm is then applied to the lateral control of unmanned airship.The unmanned airship is modeled by an LPV-type system and transformed into a polytopic uncertain description with actuator saturation. By introducing a parameter-dependent state feedback law, the set invariance condition of the polytopic uncertain system is identified. Based on the invariant set, the gain-scheduling MPC controller is presented by solving a linear matrix inequality(LMI) optimization problem. The proposed gain-scheduling MPC algorithm is demonstrated by simulating on the unmanned airship system.
基金supported by the National Science Foundation of China under Grant Nos.71171164 and 70471057the Doctorate Foundation of Northwestern Polytechnical University under Grant No.CX201235
文摘This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variational inequality into a nonlinear parabolic initial boundary problem(i.e., penalty problem). Second, the existence and uniqueness of solution to the penalty problem are proved by using the Scheafer fixed point theory. Third, the authors prove the existence of variational inequality' solution by showing the fact that the penalized PDE converges to the variational inequality. The uniqueness of solution to the variational inequality is also proved by contradiction.
基金supported by National Natural Science Foundation of China(Grant No.11225104)the Fundamental Research Funds for the Central Universities
文摘Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng(2008),we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations.As an application,we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed random variables under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite.
基金Supported by National Natural Science Foundation of China under Grant Nos.61673008 and 11261010Project of High-level Innovative Talents of Guizhou Province([2016]5651)
文摘This paper is concerned with high-order neural networks with proportional delays. The proportional delay is a time-varying unbounded delay which is different from the constant delay, bounded time-varying delay and distributed delay. By the nonlinear transformation yi(t) = ui( et)(i = 1, 2,..., n), we transform a class of high-order neural networks with proportional delays into a class of high-order neural networks with constant delays and timevarying coefficients. With the aid of Brouwer fixed point theorem and constructing the delay differential inequality, we obtain some delay-independent and delay-dependent sufficient conditions to ensure the existence, uniqueness and global exponential stability of equilibrium of the network. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.