In this paper we consider some synchronous and asynchronous multisplitting and Schwarz methods for solving the linear complementarity problems. We establish some convergence theorems of the methods by using the concep...In this paper we consider some synchronous and asynchronous multisplitting and Schwarz methods for solving the linear complementarity problems. We establish some convergence theorems of the methods by using the concept of M-splitting.展开更多
This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The ma...This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.展开更多
基金Supported by the Chinese National Science Foundation Project (10371035).
文摘In this paper we consider some synchronous and asynchronous multisplitting and Schwarz methods for solving the linear complementarity problems. We establish some convergence theorems of the methods by using the concept of M-splitting.
基金supported by the Natural Science Foundation of Hubei Province under Grant No.2008CDZ047
文摘This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.