The generalized algebraic method with symbolic computation is extended to some special-type nonlinear equations for constructing a series of new and more general travelling wave solutions in terms of special functions...The generalized algebraic method with symbolic computation is extended to some special-type nonlinear equations for constructing a series of new and more general travelling wave solutions in terms of special functions. Such equations cannot be directly dealt with by the method and require some kinds of pre-processing techniques. It is shown that soliton solutions and triangular periodic solutions can be established as the limits of the Jacobi doubly periodic wave solutions.展开更多
A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence nea...A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.展开更多
We obtain. the exact analytical results of all the eigenvalues and eigenstates for three kinds of models describing N-mode multiphoton process without using the assumption of the Bethe ansatz. The exact analytical res...We obtain. the exact analytical results of all the eigenvalues and eigenstates for three kinds of models describing N-mode multiphoton process without using the assumption of the Bethe ansatz. The exact analytical results of all the eigenstates and eigenvalues are in terms of a parameter lambda for three kinds of models describing N-mode multiphoton process. The parameter is shown to be determined by the roots of a polynomial and is solvable analytically or numerically. Moreover, these three kinds of models can be processed with the same procedure.展开更多
Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational...Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices.We show that the solutions of linear systems of equations and matrix–vector multiplications can be translated as the ground states of the constructed Hamiltonians.Based on the variational quantum algorithms,we introduce Hamiltonian morphing together with an adaptive ans?tz for efficiently finding the ground state,and show the solution verification.Our algorithms are especially suitable for linear algebra problems with sparse matrices,and have wide applications in machine learning and optimisation problems.The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation.We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations.We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.展开更多
An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner ...An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.展开更多
Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate polynom...Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate polynomial over the rational number field. Another feature of the factorization algorithm presented in this article is a new recombination method, which can solve the extraneous factor problem before lifting based on numerical linear algebra. Both theoretical analysis and experimental data show that the algorithm is etIicient, especially for sparse bivariate polynomials.展开更多
基金The project supported by the Natural Science Foundation of Shandong Province and the Natural Science Foundation of Liaocheng University
文摘The generalized algebraic method with symbolic computation is extended to some special-type nonlinear equations for constructing a series of new and more general travelling wave solutions in terms of special functions. Such equations cannot be directly dealt with by the method and require some kinds of pre-processing techniques. It is shown that soliton solutions and triangular periodic solutions can be established as the limits of the Jacobi doubly periodic wave solutions.
基金Foundation item: Supported by the National Science Foundation of China(10701066)
文摘A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.
文摘We obtain. the exact analytical results of all the eigenvalues and eigenstates for three kinds of models describing N-mode multiphoton process without using the assumption of the Bethe ansatz. The exact analytical results of all the eigenstates and eigenvalues are in terms of a parameter lambda for three kinds of models describing N-mode multiphoton process. The parameter is shown to be determined by the roots of a polynomial and is solvable analytically or numerically. Moreover, these three kinds of models can be processed with the same procedure.
基金the Engineering and Physical Sciences Research Council National Quantum Technology Hub in Networked Quantum Information Technology(EP/M013243/1)Japan Student Services Organization(JASSO)Student Exchange Support Program(Graduate Scholarship for Degree Seeking Students)+1 种基金the National Natural Science Foundation of China(U1730449)the European Quantum Technology Flagship project AQTION。
文摘Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices.We show that the solutions of linear systems of equations and matrix–vector multiplications can be translated as the ground states of the constructed Hamiltonians.Based on the variational quantum algorithms,we introduce Hamiltonian morphing together with an adaptive ans?tz for efficiently finding the ground state,and show the solution verification.Our algorithms are especially suitable for linear algebra problems with sparse matrices,and have wide applications in machine learning and optimisation problems.The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation.We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations.We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.
基金supported by National Key Basic Research Project of China (Grant No.2011CB302400)National Natural Science Foundation of China (Grant Nos. 10971217, 60970152 and 61121062)IIE'S Research Project on Cryptography (Grant No. Y3Z0013102)
文摘An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.
基金supported by National Natural Science Foundation of China(GrantNos.91118001 and 11170153)National Key Basic Research Project of China(Grant No.2011CB302400)Chongqing Science and Technology Commission Project(Grant No.cstc2013jjys40001)
文摘Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate polynomial over the rational number field. Another feature of the factorization algorithm presented in this article is a new recombination method, which can solve the extraneous factor problem before lifting based on numerical linear algebra. Both theoretical analysis and experimental data show that the algorithm is etIicient, especially for sparse bivariate polynomials.