An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
This paper gives the necessary condition and one sufficient condition of the quasimonotonic function, and proves that the linear fractional function is quasi-monotone.
This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization ...This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization problem in polynomial time.Consequently,parametrization techniques,e.g.,Dinkelbach's algorithm,can be applied by solving a classical set covering problem in each iteration.Similar reduction can also be performed on the sup-T equation constrained optimization problems withan objective function being monotone in each variable separately.This method could be extended aswell to the case in which the triangular norm is non-Archimedean.展开更多
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
文摘This paper gives the necessary condition and one sufficient condition of the quasimonotonic function, and proves that the linear fractional function is quasi-monotone.
基金supported by the National Science Foundation of the United States under Grant No. #DMI- 0553310
文摘This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization problem in polynomial time.Consequently,parametrization techniques,e.g.,Dinkelbach's algorithm,can be applied by solving a classical set covering problem in each iteration.Similar reduction can also be performed on the sup-T equation constrained optimization problems withan objective function being monotone in each variable separately.This method could be extended aswell to the case in which the triangular norm is non-Archimedean.