A least squares version of the recently proposed weighted twin support vector machine with local information(WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algo...A least squares version of the recently proposed weighted twin support vector machine with local information(WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algorithm, called least squares weighted twin support vector machine with local information(LSWLTSVM), for generating binary classifiers based on two non-parallel hyperplanes. Two modified primal problems of WLTSVM are attempted to solve, instead of two dual problems usually solved. The solution of the two modified problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems along with two systems of linear equations in WLTSVM. Moreover, two extra modifications were proposed in LSWLTSVM to improve the generalization capability. One is that a hot kernel function, not the simple-minded definition in WLTSVM, is used to define the weight matrix of adjacency graph, which ensures that the underlying similarity information between any pair of data points in the same class can be fully reflected. The other is that the weight for each point in the contrary class is considered in constructing equality constraints, which makes LSWLTSVM less sensitive to noise points than WLTSVM. Experimental results indicate that LSWLTSVM has comparable classification accuracy to that of WLTSVM but with remarkably less computational time.展开更多
This paper addresses the problem of joint angle and delay estimation(JADE) in a multipath communication scenario. A low-complexity multi-way compressive sensing(MCS) estimation algorithm is proposed. The received data...This paper addresses the problem of joint angle and delay estimation(JADE) in a multipath communication scenario. A low-complexity multi-way compressive sensing(MCS) estimation algorithm is proposed. The received data are firstly stacked up to a trilinear tensor model. To reduce the computational complexity,three random compression matrices are individually used to reduce each tensor to a much smaller one. JADE then is linked to a low-dimensional trilinear model. Our algorithm has an estimation performance very close to that of the parallel factor analysis(PARAFAC) algorithm and automatic pairing of the two parameter sets. Compared with other methods, such as multiple signal classification(MUSIC), the estimation of signal parameters via rotational invariance techniques(ESPRIT), the MCS algorithm requires neither eigenvalue decomposition of the received signal covariance matrix nor spectral peak searching. It also does not require the channel fading information, which means the proposed algorithm is blind and robust, therefore it has a higher working efficiency.Simulation results indicate the proposed algorithm have a bright future in wireless communications.展开更多
基金Project(61105057)supported by the National Natural Science Foundation of ChinaProject(13KJB520024)supported by the Natural Science Foundation of Jiangsu Higher Education Institutes of ChinaProject supported by Jiangsu Province Qing Lan Project,China
文摘A least squares version of the recently proposed weighted twin support vector machine with local information(WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algorithm, called least squares weighted twin support vector machine with local information(LSWLTSVM), for generating binary classifiers based on two non-parallel hyperplanes. Two modified primal problems of WLTSVM are attempted to solve, instead of two dual problems usually solved. The solution of the two modified problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems along with two systems of linear equations in WLTSVM. Moreover, two extra modifications were proposed in LSWLTSVM to improve the generalization capability. One is that a hot kernel function, not the simple-minded definition in WLTSVM, is used to define the weight matrix of adjacency graph, which ensures that the underlying similarity information between any pair of data points in the same class can be fully reflected. The other is that the weight for each point in the contrary class is considered in constructing equality constraints, which makes LSWLTSVM less sensitive to noise points than WLTSVM. Experimental results indicate that LSWLTSVM has comparable classification accuracy to that of WLTSVM but with remarkably less computational time.
基金supported by the National Natural Science Foundation of China(6107116361271327+4 种基金61471191)the Fundamental Research Funds for the Central Universities(NP2015504)the Jiangsu Innovation Program for Graduate Education(KYLX 0277)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ14-08)
文摘This paper addresses the problem of joint angle and delay estimation(JADE) in a multipath communication scenario. A low-complexity multi-way compressive sensing(MCS) estimation algorithm is proposed. The received data are firstly stacked up to a trilinear tensor model. To reduce the computational complexity,three random compression matrices are individually used to reduce each tensor to a much smaller one. JADE then is linked to a low-dimensional trilinear model. Our algorithm has an estimation performance very close to that of the parallel factor analysis(PARAFAC) algorithm and automatic pairing of the two parameter sets. Compared with other methods, such as multiple signal classification(MUSIC), the estimation of signal parameters via rotational invariance techniques(ESPRIT), the MCS algorithm requires neither eigenvalue decomposition of the received signal covariance matrix nor spectral peak searching. It also does not require the channel fading information, which means the proposed algorithm is blind and robust, therefore it has a higher working efficiency.Simulation results indicate the proposed algorithm have a bright future in wireless communications.