How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co...How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.展开更多
This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is ...This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is the restricted isometry constant (RIC). Some papers provided the upper bounds of RIC to guarantee that the nuclear-norm minimization stably recovers a low-rank matrix. For example, Fazel improved the upper bounds to δ4Ar 〈 0.558 and δ3rA 〈 0.4721, respectively. Recently, the upper bounds of RIC can be improved to δ2rA 〈 0.307. In fact, by using some methods, the upper bounds of RIC can be improved to δ2tA 〈 0.4931 and δrA 〈 0.309. In this paper, we focus on the lower bounds of RIC, we show that there exists linear maps A with δ2rA 〉1√2 or δrA 〉 1/3 for which nuclear norm recovery fail on some matrix with rank at most r. These results indicate that there is only a little limited room for improving the upper bounds for δ2rA and δrA.Furthermore, we also discuss the upper bound of restricted isometry constant associated with linear maps A for Schatten p (0 〈 p 〈 1) quasi norm minimization problem.展开更多
基金National Key Science & Technology Special Projects(Grant No.2008ZX05000-004)CNPC Projects(Grant No.2008E-0610-10).
文摘How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.
基金supported by National Natural Science Foundation of China (Grant Nos.91130009, 11171299 and 11041005)National Natural Science Foundation of Zhejiang Province in China (Grant Nos. Y6090091 and Y6090641)
文摘This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is the restricted isometry constant (RIC). Some papers provided the upper bounds of RIC to guarantee that the nuclear-norm minimization stably recovers a low-rank matrix. For example, Fazel improved the upper bounds to δ4Ar 〈 0.558 and δ3rA 〈 0.4721, respectively. Recently, the upper bounds of RIC can be improved to δ2rA 〈 0.307. In fact, by using some methods, the upper bounds of RIC can be improved to δ2tA 〈 0.4931 and δrA 〈 0.309. In this paper, we focus on the lower bounds of RIC, we show that there exists linear maps A with δ2rA 〉1√2 or δrA 〉 1/3 for which nuclear norm recovery fail on some matrix with rank at most r. These results indicate that there is only a little limited room for improving the upper bounds for δ2rA and δrA.Furthermore, we also discuss the upper bound of restricted isometry constant associated with linear maps A for Schatten p (0 〈 p 〈 1) quasi norm minimization problem.