期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于伴随网络的受端电网多馈入短路比约束线性化建模 被引量:3
1
作者 李少岩 曹珂 +1 位作者 顾雪平 任乙沛 《电力系统自动化》 EI CSCD 北大核心 2022年第15期75-84,共10页
网架拓扑调整作为多直流馈入受端电网规划、运行与控制中常见的优化措施,可能对多馈入短路比(MISCR)产生明显影响,但目前基于线性规划的电网拓扑优化模型无法有效考虑MISCR约束。基于此,提出一种MISCR约束的线性化解析建模方法,以节点... 网架拓扑调整作为多直流馈入受端电网规划、运行与控制中常见的优化措施,可能对多馈入短路比(MISCR)产生明显影响,但目前基于线性规划的电网拓扑优化模型无法有效考虑MISCR约束。基于此,提出一种MISCR约束的线性化解析建模方法,以节点阻抗元素的物理意义为切入点,通过构建与原网架拓扑相似、支路开断状态随动的伴随网络,建立了MISCR与网架拓扑决策变量间映射的线性化表达式。基于所提方法,分别建立计及MISCR约束的受端电网主动解列和最优线路开断问题的混合整数线性规划模型。以修改后的IEEE 39节点系统和IEEE 118节点系统为算例进行测试,结果验证了所提方法的有效性。 展开更多
关键词 受端电网 多馈入短路比 伴随网络 线性化映射 节点阻抗元素
下载PDF
基于线性化Poincaré映射模型的非线性电力电子系统控制方法
2
作者 汪沣 《电子测试》 2016年第11期65-66,共2页
非线性电力电子系统在进行动态性能分析的时候,经常会出现数据分析误差大、相关物理概念模糊不清的现象,相比之下,使用线性化Poincaré映射模型进行动态性能分析,其可靠性与转确性都有所提升。
关键词 线性化Poincaré映射模型 线性电力系子系统 控制方法
下载PDF
Locally linear embedding-based seismic attribute extraction and applications 被引量:5
3
作者 刘杏芳 郑晓东 +2 位作者 徐光成 王玲 杨昊 《Applied Geophysics》 SCIE CSCD 2010年第4期365-375,400,401,共13页
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co... How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids. 展开更多
关键词 attribute optimization dimensionality reduction locally linear embedding(LLE) manifold learning principle component analysis(PCA)
下载PDF
数学专业多元微积分教学的几点体会 被引量:3
4
作者 刘轼波 《大学数学》 2021年第3期84-92,共9页
介绍了在我校数学系二年级第一学期的本科生讲授多元微积分的一些做法.特别强调向量值函数的微分学和将实际问题转化为积分的微元分析法,且举例说明如何把学生已掌握的线性代数和常微分方程知识引入多元微积分中来,得到有重要意义的结果.
关键词 课程现代化 映射线性化 微元法 余面积公式 重积分换元公式
下载PDF
The bounds of restricted isometry constants for low rank matrices recovery 被引量:6
5
作者 WANG HuiMin LI Song 《Science China Mathematics》 SCIE 2013年第6期1117-1127,共11页
This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is ... This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is the restricted isometry constant (RIC). Some papers provided the upper bounds of RIC to guarantee that the nuclear-norm minimization stably recovers a low-rank matrix. For example, Fazel improved the upper bounds to δ4Ar 〈 0.558 and δ3rA 〈 0.4721, respectively. Recently, the upper bounds of RIC can be improved to δ2rA 〈 0.307. In fact, by using some methods, the upper bounds of RIC can be improved to δ2tA 〈 0.4931 and δrA 〈 0.309. In this paper, we focus on the lower bounds of RIC, we show that there exists linear maps A with δ2rA 〉1√2 or δrA 〉 1/3 for which nuclear norm recovery fail on some matrix with rank at most r. These results indicate that there is only a little limited room for improving the upper bounds for δ2rA and δrA.Furthermore, we also discuss the upper bound of restricted isometry constant associated with linear maps A for Schatten p (0 〈 p 〈 1) quasi norm minimization problem. 展开更多
关键词 restricted isometry constants low-rank matrix recovery Schatten-p norm nuclear norm com-pressed sensing convex optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部