Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita form...Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.展开更多
An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bod...An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bodies. The bit is considered to be an absolutely rigid spherical or ellipsoidal body, the well bottom surface can be plane or spherical. It is assumed that the system coaxiality is disturbed through small initial curvature of the drill string, imperfections of the bit and bore-well geometry or the system mass debalance. Linearized equations of the bit whirling are deducted, the frequencies of periodic motions are calculated, and their modes are constructed for different geometric parameters of the spherical and ellipsoidal bits. It is demonstrated that, depending on the system properties, the bit motion can acquire the regimes of forward and backward whMings or to transit to the state of stationary spinning relative to an immovable center of velocities. The most unfavorable and atypical whirling modes are characteristic for oblate eilipsoidal bits and curvilinear surfaces of the well bottom.展开更多
基金National Basic Research Program of China (973 Program) (2009CB421505)Major Projects for Science and Technology Development of Zhejiang Province (2007C13G1610002)Natural Science Foundation Project of Zhejiang Province(Y505286)
文摘Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.
文摘An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bodies. The bit is considered to be an absolutely rigid spherical or ellipsoidal body, the well bottom surface can be plane or spherical. It is assumed that the system coaxiality is disturbed through small initial curvature of the drill string, imperfections of the bit and bore-well geometry or the system mass debalance. Linearized equations of the bit whirling are deducted, the frequencies of periodic motions are calculated, and their modes are constructed for different geometric parameters of the spherical and ellipsoidal bits. It is demonstrated that, depending on the system properties, the bit motion can acquire the regimes of forward and backward whMings or to transit to the state of stationary spinning relative to an immovable center of velocities. The most unfavorable and atypical whirling modes are characteristic for oblate eilipsoidal bits and curvilinear surfaces of the well bottom.