为解决自适应最小均方误差(least mean squares,LMS)滤波算法难以平衡稳态误差和收敛速度的问题,提出了基于对称非线性函数的变步长LMS自适应滤波算法。通过自变量取绝对值、叠加非线性拉伸量改进Sig-moid函数,构造一个对称非线性函数...为解决自适应最小均方误差(least mean squares,LMS)滤波算法难以平衡稳态误差和收敛速度的问题,提出了基于对称非线性函数的变步长LMS自适应滤波算法。通过自变量取绝对值、叠加非线性拉伸量改进Sig-moid函数,构造一个对称非线性函数用于刻画步长因子与稳态误差的非线性关系。该对称非线性函数具有能够根据误差动态调整步长、更快达到收敛状态的特点。根据构造的对称非线性函数和输入信号功率生成归一化变步长因子,解决噪声逐级放大的问题,进一步提高算法的滤波效果同时,加速收敛。实验表明:该算法在低信噪比、信噪比变化、信号频率变化、滤波器阶数变化、延迟采样点数变化条件下均具有更好的滤波效果、更优的稳定性和更快的收敛速度。展开更多
文摘为解决自适应最小均方误差(least mean squares,LMS)滤波算法难以平衡稳态误差和收敛速度的问题,提出了基于对称非线性函数的变步长LMS自适应滤波算法。通过自变量取绝对值、叠加非线性拉伸量改进Sig-moid函数,构造一个对称非线性函数用于刻画步长因子与稳态误差的非线性关系。该对称非线性函数具有能够根据误差动态调整步长、更快达到收敛状态的特点。根据构造的对称非线性函数和输入信号功率生成归一化变步长因子,解决噪声逐级放大的问题,进一步提高算法的滤波效果同时,加速收敛。实验表明:该算法在低信噪比、信噪比变化、信号频率变化、滤波器阶数变化、延迟采样点数变化条件下均具有更好的滤波效果、更优的稳定性和更快的收敛速度。