Ordovician limestone water is coal mines. In this paper, we analyze the the main source of water inrush in North China characteristic of three kinds of nonlinear seismic attributes, such as the largest lyapunov expone...Ordovician limestone water is coal mines. In this paper, we analyze the the main source of water inrush in North China characteristic of three kinds of nonlinear seismic attributes, such as the largest lyapunov exponent,fractal dimension and entropy and introduce their calculation methods. Taking the 81st and 82nd coal districts in the Xutuan coal mine as examples, we extract the three seismic attributes based on the 3D prestack migration seismic data of this area, which can display the Ordovician limestone fracture distribution in the mine. We comprehensively analyzed the three nonlinear seismic attributes and compared the results with transient electromagnetic exploration results and determined the possible Ordovician limestone aquosity distribution. This demonstrated that the nonlinear seismic attributes technology is an effective approach to predict the aquosity of Ordovician limestone.展开更多
A squeeze film damper (SFD) with metal rubber (MR) ring installed on the end and the radial direction of rotor are implemented in this paper. Based on the hypothesis of π film, the description of the new SFD/MR flux ...A squeeze film damper (SFD) with metal rubber (MR) ring installed on the end and the radial direction of rotor are implemented in this paper. Based on the hypothesis of π film, the description of the new SFD/MR flux and nonlinear oil film damping force is derived according to the Reynolds Eq. and Darcy’s law. It proves that the SFD/MR has better damping characteristics than the traditional SFD after comparatively analyzing characteristics of oil film between the traditional short SFD and the SFD/MR.展开更多
Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is ...Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.展开更多
Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy syst...Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.展开更多
Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series o...Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.展开更多
Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel...Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.展开更多
In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In ...In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.展开更多
It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomecha...It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomechanical compatible titanium alloys with high strength and low modulus. Here we demonstrate via a model alloy, Ti-24 Nb-4 Zr-8 Sn in weight percent, that this group of multifunctional titanium alloys possessing nonlinear elastic deformation behavior is tolerant in fatigue notch damage. The results reveal that the alloy has a high strength-to-modulus(σ/E) ratio reaching2% but its fatigue notch sensitivity(q) is low, which decreases linearly from 0.45 to 0.25 as stress concentration factor increases from 2 to 4. This exceeds significantly the typical relationship between σ/E and q of other metallic materials exhibiting linear elasticity. Furthermore, fatigue damage is characterized by an extremely deflected mountain-shape fracture surface, resulting in much longer and more tortuous crack growth path as compared to these linear elastic materials. The above phenomena can be explained by the nonlinear elasticity and its induced stress relief at the notch root in an adaptive manner of higher stress stronger relief. This finding provides a new strategy to balance high strength and good damage tolerance property of metallic materials.展开更多
This work focuses on a class of jump-diffusions with state-dependent switching. First, compared with the existing results in the literature, in our model, the characteristic measure is allowed to be a-finite. The exis...This work focuses on a class of jump-diffusions with state-dependent switching. First, compared with the existing results in the literature, in our model, the characteristic measure is allowed to be a-finite. The existence and uniqueness of the underlying process are obtained by representing the switching component as a stochastic integral with respect to a Poisson random measure and by using a successive approximation method. Then, the Feller property is proved by means of introducing auxiliary processes and by making use of Radon-Nikodym derivatives. Furthermore, the irreducibility and all compact sets being petite are demonstrated. Based on these results, the uniform ergodicity is established under a general Lyapunov condition. Finally, easily verifiable conditions for uniform ergodicity are established when the jump-diffusions are linearizable with respect to the variable x (the state variable corresponding to the jump-diffusion component) in a neighborhood of the infinity, and some examples are presented to illustrate the results.展开更多
文摘Ordovician limestone water is coal mines. In this paper, we analyze the the main source of water inrush in North China characteristic of three kinds of nonlinear seismic attributes, such as the largest lyapunov exponent,fractal dimension and entropy and introduce their calculation methods. Taking the 81st and 82nd coal districts in the Xutuan coal mine as examples, we extract the three seismic attributes based on the 3D prestack migration seismic data of this area, which can display the Ordovician limestone fracture distribution in the mine. We comprehensively analyzed the three nonlinear seismic attributes and compared the results with transient electromagnetic exploration results and determined the possible Ordovician limestone aquosity distribution. This demonstrated that the nonlinear seismic attributes technology is an effective approach to predict the aquosity of Ordovician limestone.
文摘A squeeze film damper (SFD) with metal rubber (MR) ring installed on the end and the radial direction of rotor are implemented in this paper. Based on the hypothesis of π film, the description of the new SFD/MR flux and nonlinear oil film damping force is derived according to the Reynolds Eq. and Darcy’s law. It proves that the SFD/MR has better damping characteristics than the traditional SFD after comparatively analyzing characteristics of oil film between the traditional short SFD and the SFD/MR.
基金Supported by the International Foundation for Science,Stockholm,Sweden (No.C/3402-1)
文摘Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.
基金Research financially supported by Changwon National University in 2009
文摘Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.
文摘Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.
基金Project(2013CB036004) supported by National Basic Research Program(973)of ChinaProject(51378510) supported by National Natural Science Foundation of China
文摘Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.
基金supported in part by a grant from Henan Institute of Science and Technology under Grant No.06040
文摘In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.
基金supported by the National Key Research and Development Program of China (2016YFC1102601 and 2017YFC1104901)the National Natural Science Foundation of China (51571190 and 51631007)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDJ-SSW-JSC031)
文摘It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomechanical compatible titanium alloys with high strength and low modulus. Here we demonstrate via a model alloy, Ti-24 Nb-4 Zr-8 Sn in weight percent, that this group of multifunctional titanium alloys possessing nonlinear elastic deformation behavior is tolerant in fatigue notch damage. The results reveal that the alloy has a high strength-to-modulus(σ/E) ratio reaching2% but its fatigue notch sensitivity(q) is low, which decreases linearly from 0.45 to 0.25 as stress concentration factor increases from 2 to 4. This exceeds significantly the typical relationship between σ/E and q of other metallic materials exhibiting linear elasticity. Furthermore, fatigue damage is characterized by an extremely deflected mountain-shape fracture surface, resulting in much longer and more tortuous crack growth path as compared to these linear elastic materials. The above phenomena can be explained by the nonlinear elasticity and its induced stress relief at the notch root in an adaptive manner of higher stress stronger relief. This finding provides a new strategy to balance high strength and good damage tolerance property of metallic materials.
基金supported in part by National Natural Science Foundation of China(Grant No. 11171024)supported in part by National Natural Science Foundation of China (Grant No.70871055)supported in part by National Science Foundationof US (Grant No. DMS-0907753)
文摘This work focuses on a class of jump-diffusions with state-dependent switching. First, compared with the existing results in the literature, in our model, the characteristic measure is allowed to be a-finite. The existence and uniqueness of the underlying process are obtained by representing the switching component as a stochastic integral with respect to a Poisson random measure and by using a successive approximation method. Then, the Feller property is proved by means of introducing auxiliary processes and by making use of Radon-Nikodym derivatives. Furthermore, the irreducibility and all compact sets being petite are demonstrated. Based on these results, the uniform ergodicity is established under a general Lyapunov condition. Finally, easily verifiable conditions for uniform ergodicity are established when the jump-diffusions are linearizable with respect to the variable x (the state variable corresponding to the jump-diffusion component) in a neighborhood of the infinity, and some examples are presented to illustrate the results.