The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim...The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.展开更多
This paper deals with the approximate nonstationary probability density of a class of nonlinear vibrating system excited by colored noise. First, the stochastic averaging method is adopted to obtain the averaged It6 e...This paper deals with the approximate nonstationary probability density of a class of nonlinear vibrating system excited by colored noise. First, the stochastic averaging method is adopted to obtain the averaged It6 equation for the amplitude of the system. The corresponding Fokker-Planck-Kolmogorov equation governing the evolutionary probability density function is deduced. Then, the approximate solution of the Fokker-Planck-Kolmogorov equation is derived by applying the Galerkin method. The solution is expressed as a sum of a series of expansion in terms of a set of proper basis functions with time- depended coefficients. Finally, an example is given to illustrate the proposed procedure. The validity of the proposed method is confirmed by Monte Carlo Simulation.展开更多
Portfolio management is a typical decision making problem under incomplete,sometimes unknown, information. This paper considers the portfolio selection problemsunder a general setting of uncertain states without proba...Portfolio management is a typical decision making problem under incomplete,sometimes unknown, information. This paper considers the portfolio selection problemsunder a general setting of uncertain states without probability. The investor's preferenceis based on his optimum degree about the nature, and his attitude can be described by anOrdered Weighted Averaging Aggregation function. We construct the OWA portfolio selection model, which is a nonlinear programming problem. The problem can be equivalentlytransformed into a mixed integer linear programming. A numerical example is given andthe solutions imply that the investor's strategies depend not only on his optimum degreebut also on his preference weight vector. The general game-theoretical portfolio selectionmethod, max-min method and competitive ratio method are all the special settings of thismodel.展开更多
Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weig...Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization(EM) and the Markov Chain Monte Carlo(MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the addi-tional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA(referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algo-rithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is al-most equivalent to that for EM.展开更多
文摘The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872165 and 10932009)
文摘This paper deals with the approximate nonstationary probability density of a class of nonlinear vibrating system excited by colored noise. First, the stochastic averaging method is adopted to obtain the averaged It6 equation for the amplitude of the system. The corresponding Fokker-Planck-Kolmogorov equation governing the evolutionary probability density function is deduced. Then, the approximate solution of the Fokker-Planck-Kolmogorov equation is derived by applying the Galerkin method. The solution is expressed as a sum of a series of expansion in terms of a set of proper basis functions with time- depended coefficients. Finally, an example is given to illustrate the proposed procedure. The validity of the proposed method is confirmed by Monte Carlo Simulation.
文摘Portfolio management is a typical decision making problem under incomplete,sometimes unknown, information. This paper considers the portfolio selection problemsunder a general setting of uncertain states without probability. The investor's preferenceis based on his optimum degree about the nature, and his attitude can be described by anOrdered Weighted Averaging Aggregation function. We construct the OWA portfolio selection model, which is a nonlinear programming problem. The problem can be equivalentlytransformed into a mixed integer linear programming. A numerical example is given andthe solutions imply that the investor's strategies depend not only on his optimum degreebut also on his preference weight vector. The general game-theoretical portfolio selectionmethod, max-min method and competitive ratio method are all the special settings of thismodel.
基金supported by National Basic Research Program of China (Grant No. 2010CB428403)National Natural Science Foundation of China (Grant No.41075076)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-QN207)
文摘Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization(EM) and the Markov Chain Monte Carlo(MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the addi-tional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA(referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algo-rithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is al-most equivalent to that for EM.