若X_t是线性平稳序列、可表示为X_t=sum from j=-∞ to +∞(b_(t-j)ζ_j的形式、其中{ζ_j}j=0,±1,……是独立同分布的随机序列:Eζ_j=0,Eζ_j^2=σ~2>0。对于这种平稳随机序列,T.W.Anderson讨论了其相关系数估计量的渐近分布...若X_t是线性平稳序列、可表示为X_t=sum from j=-∞ to +∞(b_(t-j)ζ_j的形式、其中{ζ_j}j=0,±1,……是独立同分布的随机序列:Eζ_j=0,Eζ_j^2=σ~2>0。对于这种平稳随机序列,T.W.Anderson讨论了其相关系数估计量的渐近分布问题。本文将要讨论{ζ_j}是M维实四阶鞅差序列时,多维线性平稳序列(1)的相关系数组成的协方差阵的估计量的渐近分布问题。为此目的,我们研究了鞅差序列二次型的渐近分布,改进了作者在[2]中所得到的结果。並求出了此种协方差阵估计的渐近分布。展开更多
The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0...The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0 is considered. Formulas that determine the greatest value of mean square error and the minimax estimation for the functional are proposed for the given class of admissible processes. It is shown that one-sided moving average stationary sequence gives the greatest value of the mean square error.展开更多
文摘若X_t是线性平稳序列、可表示为X_t=sum from j=-∞ to +∞(b_(t-j)ζ_j的形式、其中{ζ_j}j=0,±1,……是独立同分布的随机序列:Eζ_j=0,Eζ_j^2=σ~2>0。对于这种平稳随机序列,T.W.Anderson讨论了其相关系数估计量的渐近分布问题。本文将要讨论{ζ_j}是M维实四阶鞅差序列时,多维线性平稳序列(1)的相关系数组成的协方差阵的估计量的渐近分布问题。为此目的,我们研究了鞅差序列二次型的渐近分布,改进了作者在[2]中所得到的结果。並求出了此种协方差阵估计的渐近分布。
文摘The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0 is considered. Formulas that determine the greatest value of mean square error and the minimax estimation for the functional are proposed for the given class of admissible processes. It is shown that one-sided moving average stationary sequence gives the greatest value of the mean square error.