期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
弹性方柱中波的传播规律 Ⅳ.边界条件的作用
1
作者 魏建萍 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期743-747,共5页
材料的物理属性、结构的空间表现和系统的边界状态是波导系统的3个组成要素。讨论了弹性波导系统的边界状态在整个系统的作用。发现边界条件的集合是与实数集等势的集合;边界条件方程与控制方程共同构成Hilbert函数空间中的线性微分表达... 材料的物理属性、结构的空间表现和系统的边界状态是波导系统的3个组成要素。讨论了弹性波导系统的边界状态在整个系统的作用。发现边界条件的集合是与实数集等势的集合;边界条件方程与控制方程共同构成Hilbert函数空间中的线性微分表达式,并且其具备的线性性质使得结构经过仿射变换后,频谱之间具有仿射变换的规律。这些优异性质使得求解出仿射结构集合中某一结构的频谱,就能够完全得到该集合中所有结构的频谱和稳态响应。 展开更多
关键词 边界条件集合 Hilbert函数空间 线性微分表达式 仿射变换 仿射结构
下载PDF
A sixth-order wavelet integral collocation method for solving nonlinear boundary value problems in three dimensions 被引量:1
2
作者 Zhichun Hou Jiong Weng +2 位作者 Xiaojing Liu Youhe Zhou Jizeng Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第2期81-92,I0003,共13页
A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate e... A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate expression of multiple integrals of a continuous function defined in a three-dimensional bounded domain is proposed by combining wavelet expansion and Lagrange boundary extension.Through applying such an integral technique,during the solution of nonlinear partial differential equations,the unknown function and its lower-order partial derivatives can be approximately expressed by its highest-order partial derivative values at nodes.A set of nonlinear algebraic equations with respect to these nodal values of the highest-order partial derivative is obtained using a collocation method.The validation and convergence of the proposed method are examined through several benchmark problems,including the eighth-order two-dimensional and fourth-order three-dimensional boundary value problems and the large deflection bending of von Karman plates.Results demonstrate that the present method has higher accuracy and convergence rate than most existing numerical methods.Most importantly,the convergence rate of the proposed method seems to be independent of the order of the differential equations,because it is always sixth order for second-,fourth-,sixth-,and even eighth-order problems. 展开更多
关键词 Nonlinear boundary value problems Eighth-order derivative Coiflet wavelet Integral collocation method Von Karman plate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部