Non-linear dynamics,fractals,periodic oscillations,bifurcations,chaos,and other terminologies have been used to describe human biological systems in the literature for a few decades.The eight manuscripts included in t...Non-linear dynamics,fractals,periodic oscillations,bifurcations,chaos,and other terminologies have been used to describe human biological systems in the literature for a few decades.The eight manuscripts included in this special issue discussed the historical background,展开更多
Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external bi...Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.展开更多
We present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and the sub-wavenumber high resolut...We present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and the sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, obtain- ing detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution sum-frequency generation vibrational spectroscopy is probably more advantageous than the time- domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.展开更多
In recent years,significant progress has been made regarding theories of intraseasonal oscillations (ISOs) (also known as the Madden-Julian oscillation (MJO) in the tropics).This short review introduces the latest adv...In recent years,significant progress has been made regarding theories of intraseasonal oscillations (ISOs) (also known as the Madden-Julian oscillation (MJO) in the tropics).This short review introduces the latest advances in ISO theories with an emphasis particularly on theoretical paradigms involving nonlinear dynamics in the following aspects:(1) the basic ideas and limitations of the previous and current theories and hypotheses regarding the MJO,(2) the new multi-scale theory of the MJO based on the intraseasonal planetary equatorial synoptic dynamics (IPESD) framework,and (3) nonlinear dynamics of ISOs in the extratropics based on the resonant triads of Rossby-Haurwitz waves.展开更多
Periodic solutions occur commonly in linear or nonlinear dynamical systems. In some cases, the stability of a periodic solution holds if the rightmost characteristic root has negative real part. Based on the Lambert W...Periodic solutions occur commonly in linear or nonlinear dynamical systems. In some cases, the stability of a periodic solution holds if the rightmost characteristic root has negative real part. Based on the Lambert W function, this paper presents a simple algorithm for locating the rightmost characteristic root of periodic solutions of some nonlinear oscillators with large time delay. As application, the proposed algorithm is used to study the primary resonance and 1/3 subharmonic resonance of the Duffing oscillator under harmonic excitation and delayed feedback, as well as the control problem of the van der Pol oscillator under harmonic excitation by using delayed feedback, with a number of case studies. The main advantage of this algorithm is that though very simple in implementation, it works effectively with high accuracy even if the delay is large.展开更多
We consider the nonlinear functional dynamic equation (p(t)[(r(t)x^△(t))^△]γ)^△+q(t)f(x(τ(t))) =0, for t≥t0,on a time scale T, where γ〉 0 is the quotient of odd positive integers, p, r, τ- ...We consider the nonlinear functional dynamic equation (p(t)[(r(t)x^△(t))^△]γ)^△+q(t)f(x(τ(t))) =0, for t≥t0,on a time scale T, where γ〉 0 is the quotient of odd positive integers, p, r, τ- and q are positive rd-continuous functions defined on the time scale 1F, and lirut→∞ τ(t) = ∞. The main aim of this paper is to establish some new sufficient conditions which guarantee that the equation has oscillatory solutions or the solutions tend to zero as →∞ τ. The main investigation depends on the Riccati substitution and the analysis of the associated Riccati dynamic inequality. Our results extend, complement and improve some previously obtained ones. In particular, the results provided substantial improvement for those obtained by Yu and Wang [J Comput Appl Math, 225 (2009), 531-540]. Some examples illustrating the main results are given.展开更多
This paper focuses on the 1/2 sub-harmonic resonance of an aircraft’s rotor system under hovering flight that can be modeled as a maneuver load G in the equations of motion.The effect on the rotor system is analyzed ...This paper focuses on the 1/2 sub-harmonic resonance of an aircraft’s rotor system under hovering flight that can be modeled as a maneuver load G in the equations of motion.The effect on the rotor system is analyzed by using theoretical methods.It is shown that the sub-harmonic resonance may occur due to maneuvering flight conditions.The larger the eccentricity E and the maneuver load G,the greater the sub-harmonic resonance.The effects of nonlinear stiffness,damping of the system,maneuver load,and eccentricity on the sub-harmonic resonance region in parameter planes are also investigated.Bifurcation diagrams of the analytical solutions are in good agreement with that of the numerical simulation solutions.These results will contribute to the understanding of the nonlinear dynamic behaviors of maneuvering rotor systems.展开更多
We experimentally demonstrate the chaotic generation in a figure-of-eight erbium-doped fiber laser (F8L) with an optical fiber ring (OFR). With an appropriate combination of polarization controllers, we find that the ...We experimentally demonstrate the chaotic generation in a figure-of-eight erbium-doped fiber laser (F8L) with an optical fiber ring (OFR). With an appropriate combination of polarization controllers, we find that the fiber laser exhibits period-doubling route to chaos, and the chaotic self-synchronous dynamics has a tendency to be reduced significantly. The experimental results show the tendency is related to the interference and the nonlinear phase shift of light in the optical fiber ring. Meanwhile, the chaotic dynamics is related to the polarization state and pump power.展开更多
文摘Non-linear dynamics,fractals,periodic oscillations,bifurcations,chaos,and other terminologies have been used to describe human biological systems in the literature for a few decades.The eight manuscripts included in this special issue discussed the historical background,
文摘Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.
文摘We present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and the sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, obtain- ing detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution sum-frequency generation vibrational spectroscopy is probably more advantageous than the time- domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.
基金supported by the National Natural Science Foundation of China (Grant No. 40975028)
文摘In recent years,significant progress has been made regarding theories of intraseasonal oscillations (ISOs) (also known as the Madden-Julian oscillation (MJO) in the tropics).This short review introduces the latest advances in ISO theories with an emphasis particularly on theoretical paradigms involving nonlinear dynamics in the following aspects:(1) the basic ideas and limitations of the previous and current theories and hypotheses regarding the MJO,(2) the new multi-scale theory of the MJO based on the intraseasonal planetary equatorial synoptic dynamics (IPESD) framework,and (3) nonlinear dynamics of ISOs in the extratropics based on the resonant triads of Rossby-Haurwitz waves.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10825207, 11032009)by Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0968)
文摘Periodic solutions occur commonly in linear or nonlinear dynamical systems. In some cases, the stability of a periodic solution holds if the rightmost characteristic root has negative real part. Based on the Lambert W function, this paper presents a simple algorithm for locating the rightmost characteristic root of periodic solutions of some nonlinear oscillators with large time delay. As application, the proposed algorithm is used to study the primary resonance and 1/3 subharmonic resonance of the Duffing oscillator under harmonic excitation and delayed feedback, as well as the control problem of the van der Pol oscillator under harmonic excitation by using delayed feedback, with a number of case studies. The main advantage of this algorithm is that though very simple in implementation, it works effectively with high accuracy even if the delay is large.
基金supported by King Saud University,Dean-ship of Scientific Research,College of Science Research Centre
文摘We consider the nonlinear functional dynamic equation (p(t)[(r(t)x^△(t))^△]γ)^△+q(t)f(x(τ(t))) =0, for t≥t0,on a time scale T, where γ〉 0 is the quotient of odd positive integers, p, r, τ- and q are positive rd-continuous functions defined on the time scale 1F, and lirut→∞ τ(t) = ∞. The main aim of this paper is to establish some new sufficient conditions which guarantee that the equation has oscillatory solutions or the solutions tend to zero as →∞ τ. The main investigation depends on the Riccati substitution and the analysis of the associated Riccati dynamic inequality. Our results extend, complement and improve some previously obtained ones. In particular, the results provided substantial improvement for those obtained by Yu and Wang [J Comput Appl Math, 225 (2009), 531-540]. Some examples illustrating the main results are given.
基金supported by the National Natural Science Foundation of China(Grant No.10632040)
文摘This paper focuses on the 1/2 sub-harmonic resonance of an aircraft’s rotor system under hovering flight that can be modeled as a maneuver load G in the equations of motion.The effect on the rotor system is analyzed by using theoretical methods.It is shown that the sub-harmonic resonance may occur due to maneuvering flight conditions.The larger the eccentricity E and the maneuver load G,the greater the sub-harmonic resonance.The effects of nonlinear stiffness,damping of the system,maneuver load,and eccentricity on the sub-harmonic resonance region in parameter planes are also investigated.Bifurcation diagrams of the analytical solutions are in good agreement with that of the numerical simulation solutions.These results will contribute to the understanding of the nonlinear dynamic behaviors of maneuvering rotor systems.
基金supported by the National Natural Science Foundation of China (No.61107033)the Natural Science Foundation for Young Scientists of Shanxi Province of China (No.2008021008)
文摘We experimentally demonstrate the chaotic generation in a figure-of-eight erbium-doped fiber laser (F8L) with an optical fiber ring (OFR). With an appropriate combination of polarization controllers, we find that the fiber laser exhibits period-doubling route to chaos, and the chaotic self-synchronous dynamics has a tendency to be reduced significantly. The experimental results show the tendency is related to the interference and the nonlinear phase shift of light in the optical fiber ring. Meanwhile, the chaotic dynamics is related to the polarization state and pump power.