The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing,robotic and biological visions. This paper discusses a general method for designing template of the global connectiv...The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing,robotic and biological visions. This paper discusses a general method for designing template of the global connectivitydetection (GCD) CNN, which provides parameter inequalities for determining parameter intervals for implementing thecorresponding functions. The GCD CNN has stronger ability and faster rate for determining global connectivity in binarypatterns than the GCD CNN proposed by Zarandy. An example for detecting the connectivity in complex patterns isgiven.展开更多
A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity er...A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.展开更多
We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three partie...We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.展开更多
We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement ...We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement of the entanglement of quantum channel, but requires an additional photon and an auxiliary maximally entangled photon pair locally.展开更多
Radio-over-Fiber (RoF) technologies have been considered to be a promising solution to broadband access and ubiquitous sensing. We present a novel approach using dual-wavelength lights to suppress the nonlinear inte...Radio-over-Fiber (RoF) technologies have been considered to be a promising solution to broadband access and ubiquitous sensing. We present a novel approach using dual-wavelength lights to suppress the nonlinear intermodulation distortion in intensity-modulated RoF link both theoretically and experimentally. The system we proposed rminly consists of two Laser Diodes (LDs) at different wavelengths, a commercial available Mach-Zehnder Modulator (MZM) and a Photo Detector (PD). More than 25 dB suppression of the Third-order Interrnodulation Distortion (IMD3) is achieved by adjusting the wavelength and opti- cal power of the laser. Besides, the output of the MZM is then sent to the photodetector via a single fiber, which simplifies the system complexity for distrbution of RF signals over long distances.展开更多
文摘The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing,robotic and biological visions. This paper discusses a general method for designing template of the global connectivitydetection (GCD) CNN, which provides parameter inequalities for determining parameter intervals for implementing thecorresponding functions. The GCD CNN has stronger ability and faster rate for determining global connectivity in binarypatterns than the GCD CNN proposed by Zarandy. An example for detecting the connectivity in complex patterns isgiven.
文摘A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos. 2006kj070A and 2006kj057B, and the Talent Foundation of Anhui University
文摘We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province of China under Grant Nos. 2006KJ070A, 2006KJ057B, and the Talent Foundation of Anhui University.
文摘We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement of the entanglement of quantum channel, but requires an additional photon and an auxiliary maximally entangled photon pair locally.
基金Acknowledgements This work was supported by the National Basic Research Program of China under Grant No. 2012CB315705 the Hi-Tech Research and Development Program of China under Grant No. 2011AA010306+2 种基金 the National Natural Science Foundation of China under Grants No. 60736002, No. 60932004, No. 61001121, No. 61107058 and No. 61120106001 the Beijing Excellent Doctoral Thesis Project under Grant No. YB20101001301 and the Cooperation Project between Province and Ministries under Grant No. 201013090400112.
文摘Radio-over-Fiber (RoF) technologies have been considered to be a promising solution to broadband access and ubiquitous sensing. We present a novel approach using dual-wavelength lights to suppress the nonlinear intermodulation distortion in intensity-modulated RoF link both theoretically and experimentally. The system we proposed rminly consists of two Laser Diodes (LDs) at different wavelengths, a commercial available Mach-Zehnder Modulator (MZM) and a Photo Detector (PD). More than 25 dB suppression of the Third-order Interrnodulation Distortion (IMD3) is achieved by adjusting the wavelength and opti- cal power of the laser. Besides, the output of the MZM is then sent to the photodetector via a single fiber, which simplifies the system complexity for distrbution of RF signals over long distances.