期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多类单输入多项式神经网络预测能力比较 被引量:4
1
作者 张雨浓 陈锦浩 +2 位作者 劳稳超 张智军 仇尧 《系统仿真学报》 CAS CSCD 北大核心 2014年第1期90-96,共7页
多项式神经网络是根据函数逼近理论与多项式插值建立的一种以线性无关或者正交多项式为隐层神经元激励函数的前向神经网络。分别利用Legendre多项式、Hermite多项式、第一类Chebyshev多项式、第二类Chebyshev多项式、Bernoulli多项式及... 多项式神经网络是根据函数逼近理论与多项式插值建立的一种以线性无关或者正交多项式为隐层神经元激励函数的前向神经网络。分别利用Legendre多项式、Hermite多项式、第一类Chebyshev多项式、第二类Chebyshev多项式、Bernoulli多项式及幂函数构造相应的单输入多项式神经网络,设计出一种适用于该六类神经网络的增长型权值与结构确定算法以确定其相应的最优网络结构与连接权值。基于该算法,深入研究了采用不同的隐层神经元激励函数时多项式神经网络的学习和预测能力。仿真结果表明,除了由Hermite多项式和Bernoulli多项式构建的神经网络的学习和预测能力相对一般外,其他四类神经网络都具有较为优越的学习和预测能力。最后,利用第一类Chebyshev多项式神经网络对世界人口趋势进行了仿真预测。 展开更多
关键词 单输入多项式神经网络 权值与结构确定算法 预测 线性无关多项式 正交多项式 世界人口
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部