期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
巨型减振框架结构地震反应线性最优半主动控制 被引量:6
1
作者 张敏 《广西工学院学报》 CAS 2012年第2期1-6,25,共7页
根据线性最优主动控制的原则,提出了同时控制位移、速度和加速度的最优主动控制策略,导出修正Riccati方程,由此利用磁流体阻尼器,对巨型减振框架结构的地震反应进行了半主动控制,表明该结构体系的半主动控制能显著地降低主框架的振动位... 根据线性最优主动控制的原则,提出了同时控制位移、速度和加速度的最优主动控制策略,导出修正Riccati方程,由此利用磁流体阻尼器,对巨型减振框架结构的地震反应进行了半主动控制,表明该结构体系的半主动控制能显著地降低主框架的振动位移,能有效地降低主、次框架的振动加速度. 展开更多
关键词 主动控制 最优主动控制 磁流体阻尼器 巨型框架 线性最优主动控制
下载PDF
巨型框架多功能减振结构脉动风振反应的线性最优半主动控制
2
作者 张敏 《工业建筑》 CSCD 北大核心 2007年第10期33-37,共5页
根据线性最优主动控制的原则,提出了同时控制位移、速度和加速度的最优主动控制策略,导出了修正Riccati方程。由此利用磁流体阻尼器,对巨型框架多功能减振结构的脉动风振反应进行了半主动控制,表明该结构体系的半主动控制比被动控制能... 根据线性最优主动控制的原则,提出了同时控制位移、速度和加速度的最优主动控制策略,导出了修正Riccati方程。由此利用磁流体阻尼器,对巨型框架多功能减振结构的脉动风振反应进行了半主动控制,表明该结构体系的半主动控制比被动控制能更显著地减小主、次框架的振动加速度,能更有效地降低主框架的振动位移。 展开更多
关键词 主动控制 最优主动控制 磁流体阻尼器 巨型框架 线性最优主动控制
下载PDF
Nonlinear optimal control of rotating flexible shaft in active magnetic bearings 被引量:6
3
作者 G. S. TOMBUL S. P. BANKS 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1084-1094,共11页
The optimal control of nonlinear systems has been studied for years by many researchers. However, the application of optimal control problem to nonlinear non-affine systems needs more attention. In this paper we propo... The optimal control of nonlinear systems has been studied for years by many researchers. However, the application of optimal control problem to nonlinear non-affine systems needs more attention. In this paper we propose an optimal control design technique for a class of nonlinear and control non-affine equations. The dynamic equations of a flexible shaft supported by a pair of active magnetic bearings (AMBs) are used as the nonlinear control non-affine equations. Mathematical model for the flexible beam is chosen to be the well known Timoshenko beam model, which takes rotary inertia and shear deformations into account, and it is assumed that the shaft is supported by two frictionless bearings at the ends. The effective control of such systems is extremely important for very high angular velocity shafts which are a feature of many modern machines. The control must be able to cope with unbalanced masses and hence be very robust. We shall approach the problem by discretising the Timoshenko beam model and using standard difference formulae to develop a finite-dimensional model of the system. Then we use a recently developed technique for controlling nonlinear systems by reducing the problem to a sequence of linear time-varying (LTV) systems. An optimal control designed for each approximating linear, time-varying system and recent results show that this method will converge uniformly on compact time intervals to the optimal solution. 展开更多
关键词 approximation technique nonlinear optimal control timoshenko beam active magnetic bearings
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部