Low-density closed-cell aluminum foam is promising to be used as load-bearing and thermal insulation components. It is necessary to systematically study its thermal expansion performance. In this work, linear thermal ...Low-density closed-cell aluminum foam is promising to be used as load-bearing and thermal insulation components. It is necessary to systematically study its thermal expansion performance. In this work, linear thermal expansion coefficient(LTEC) of the closed-cell aluminum foam of different density was measured in the temperature range of 100–500 °C. X-ray fluorescence was used to analyze elemental composition of the cell wall material. Phase transition characteristics were analyzed with X-ray diffraction and differential scanning calorimetry. LTEC of the closed-cell aluminum foam was found to be dominated by its cell wall property and independent of its density. Particularly, two anomalies were found and experimentally analyzed. Due to the release of the residual tensile stress, the LTEC declined and even exhibited negative values. After several thermal cycles, the residual stress vanished. With temperature higher than 300 °C,instantaneous LTEC showed hysteresis, which should result from the redistribution of some residual hydrogen in the Ti2Al20 Ca lattice.展开更多
The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are i...The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are investigated by means of high temperature tests. The thermophysical characteristics of RPC with different fiber volumes under different temperatures are analyzed and compared with those of the common high-strength concrete and high-performance concrete. The empirical relationships of thermophysical properties with temperature and fiber volume are identified. By the heat transfer and solid physics methods,the microscopic physical mechanism of heat transfer process and heat conduction properties of RPC are investigated,and the theoretical formulas of specific heat capacity and thermal expansion coefficient are derived,respectively. The effects of temperature and steel fibers on the specific heat capacity and the thermal expansion coefficient are quantitatively analyzed and the discriminant conditions are provided. It is shown that the experimental results are consistent with the theoretical prediction.展开更多
基金supported by the National Natural Science Foundation of China (90916026)
文摘Low-density closed-cell aluminum foam is promising to be used as load-bearing and thermal insulation components. It is necessary to systematically study its thermal expansion performance. In this work, linear thermal expansion coefficient(LTEC) of the closed-cell aluminum foam of different density was measured in the temperature range of 100–500 °C. X-ray fluorescence was used to analyze elemental composition of the cell wall material. Phase transition characteristics were analyzed with X-ray diffraction and differential scanning calorimetry. LTEC of the closed-cell aluminum foam was found to be dominated by its cell wall property and independent of its density. Particularly, two anomalies were found and experimentally analyzed. Due to the release of the residual tensile stress, the LTEC declined and even exhibited negative values. After several thermal cycles, the residual stress vanished. With temperature higher than 300 °C,instantaneous LTEC showed hysteresis, which should result from the redistribution of some residual hydrogen in the Ti2Al20 Ca lattice.
基金supported by the National Natural Science Foundation of China (Grant No. 50974125)the National Basic Research Program of China ("973" Project) (Grant Nos.2010CB226804,2002CB412705)the Beijing Key Laboratory Projects
文摘The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are investigated by means of high temperature tests. The thermophysical characteristics of RPC with different fiber volumes under different temperatures are analyzed and compared with those of the common high-strength concrete and high-performance concrete. The empirical relationships of thermophysical properties with temperature and fiber volume are identified. By the heat transfer and solid physics methods,the microscopic physical mechanism of heat transfer process and heat conduction properties of RPC are investigated,and the theoretical formulas of specific heat capacity and thermal expansion coefficient are derived,respectively. The effects of temperature and steel fibers on the specific heat capacity and the thermal expansion coefficient are quantitatively analyzed and the discriminant conditions are provided. It is shown that the experimental results are consistent with the theoretical prediction.