A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
A double-input–multi-output linearized system is developed using the state-space method for dynamic analysis of methanation process of coke oven gas.The stability of reactor alone and reactor with feed-effluent heat ...A double-input–multi-output linearized system is developed using the state-space method for dynamic analysis of methanation process of coke oven gas.The stability of reactor alone and reactor with feed-effluent heat exchanger is compared through the dominant poles of the system transfer functions.With single or double disturbance of temperature and CO concentration at the reactor inlet,typical dynamic behavior in the reactor,including fast concentration response,slow temperature response and inverse response,is revealed for further understanding of the counteraction and synergy effects caused by simultaneous variation of concentration and temperature.Analysis results show that the stability of the reactor loop is more sensitive than that of reactor alone due to the positive heat feedback.Remarkably,with the decrease of heat exchange efficiency,the reactor system may display limit cycle behavior for a pair of complex conjugate poles across the imaginary axis.展开更多
A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,whi...A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.展开更多
The semi-global stabilization problem for a class of nonlinear systems with state time-delay is addressed in this paper. By using Lyapunov-Krasovskii functional method and homogeneous dom- ination approach, a homogene...The semi-global stabilization problem for a class of nonlinear systems with state time-delay is addressed in this paper. By using Lyapunov-Krasovskii functional method and homogeneous dom- ination approach, a homogeneous observer and an output feedback controller with a scaling gain are designed. Then the sealing gain is adjusted such that the closed-loop system is semi-global asymptoti- cally stable. A numerical example is presented to illustrate the effectiveness of the obtained results in this paper.展开更多
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
基金Supported by the Major Research plan of the National Natural Science Foundation of China(91334101)the National Basic Research Program of China(2009CB219906)the National Natural Science Foundation of China(21276203)
文摘A double-input–multi-output linearized system is developed using the state-space method for dynamic analysis of methanation process of coke oven gas.The stability of reactor alone and reactor with feed-effluent heat exchanger is compared through the dominant poles of the system transfer functions.With single or double disturbance of temperature and CO concentration at the reactor inlet,typical dynamic behavior in the reactor,including fast concentration response,slow temperature response and inverse response,is revealed for further understanding of the counteraction and synergy effects caused by simultaneous variation of concentration and temperature.Analysis results show that the stability of the reactor loop is more sensitive than that of reactor alone due to the positive heat feedback.Remarkably,with the decrease of heat exchange efficiency,the reactor system may display limit cycle behavior for a pair of complex conjugate poles across the imaginary axis.
基金Project supported by the National Natural Science Foundation of China(Nos.61331019 and 61490691) the China Scholarship Council Postgraduate Scholarship Program(2014) the National Grid(UK)
文摘A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.
基金supported by the National Natural Science Foundation of China under Grant Nos.61374038,61473079,and 61374060
文摘The semi-global stabilization problem for a class of nonlinear systems with state time-delay is addressed in this paper. By using Lyapunov-Krasovskii functional method and homogeneous dom- ination approach, a homogeneous observer and an output feedback controller with a scaling gain are designed. Then the sealing gain is adjusted such that the closed-loop system is semi-global asymptoti- cally stable. A numerical example is presented to illustrate the effectiveness of the obtained results in this paper.