A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorize...A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.展开更多
To combat the well-known state-space explosion problem in Prop ositional Linear T emp o- ral Logic (PLTL) model checking, a novel algo- rithm capable of translating PLTL formulas into Nondeterministic Automata (NA...To combat the well-known state-space explosion problem in Prop ositional Linear T emp o- ral Logic (PLTL) model checking, a novel algo- rithm capable of translating PLTL formulas into Nondeterministic Automata (NA) in an efficient way is proposed. The algorithm firstly transforms PLTL formulas into their non-free forms, then it further translates the non-free formulas into their Normal Forms (NFs), next constructs Normal Form Graphs (NFGs) for NF formulas, and it fi- nally transforms NFGs into the NA which ac- cepts both finite words and int-mite words. The experimental data show that the new algorithm re- duces the average number of nodes of target NA for a benchmark formula set and selected formulas in the literature, respectively. These results indi- cate that the PLTL model checking technique em- ploying the new algorithm generates a smaller state space in verification of concurrent systems.展开更多
State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation pro...State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.展开更多
A double-input–multi-output linearized system is developed using the state-space method for dynamic analysis of methanation process of coke oven gas.The stability of reactor alone and reactor with feed-effluent heat ...A double-input–multi-output linearized system is developed using the state-space method for dynamic analysis of methanation process of coke oven gas.The stability of reactor alone and reactor with feed-effluent heat exchanger is compared through the dominant poles of the system transfer functions.With single or double disturbance of temperature and CO concentration at the reactor inlet,typical dynamic behavior in the reactor,including fast concentration response,slow temperature response and inverse response,is revealed for further understanding of the counteraction and synergy effects caused by simultaneous variation of concentration and temperature.Analysis results show that the stability of the reactor loop is more sensitive than that of reactor alone due to the positive heat feedback.Remarkably,with the decrease of heat exchange efficiency,the reactor system may display limit cycle behavior for a pair of complex conjugate poles across the imaginary axis.展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2011-2012
文摘A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.
基金The first author of this paper would like to thank the follow- ing scholars, Prof. Joseph Sifakis, 2007 Turing Award Winner, for his invaluable help with my research and Dr. Kevin Lu at Brunel University, UK for his excellent suggestions on this paper. This work was supported by the National Natural Sci- ence Foundation of China under Grant No.61003079 the Chi- na Postdoctoral Science Foundation under Grant No. 2012M511588.
文摘To combat the well-known state-space explosion problem in Prop ositional Linear T emp o- ral Logic (PLTL) model checking, a novel algo- rithm capable of translating PLTL formulas into Nondeterministic Automata (NA) in an efficient way is proposed. The algorithm firstly transforms PLTL formulas into their non-free forms, then it further translates the non-free formulas into their Normal Forms (NFs), next constructs Normal Form Graphs (NFGs) for NF formulas, and it fi- nally transforms NFGs into the NA which ac- cepts both finite words and int-mite words. The experimental data show that the new algorithm re- duces the average number of nodes of target NA for a benchmark formula set and selected formulas in the literature, respectively. These results indi- cate that the PLTL model checking technique em- ploying the new algorithm generates a smaller state space in verification of concurrent systems.
基金Supported by the National Natural Science Foundation of China(61503019)the Beijing Natural Science Foundation(4152041)Beijing Higher Education Young Elite Teacher Project(YETP0504)
文摘State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.
基金Supported by the Major Research plan of the National Natural Science Foundation of China(91334101)the National Basic Research Program of China(2009CB219906)the National Natural Science Foundation of China(21276203)
文摘A double-input–multi-output linearized system is developed using the state-space method for dynamic analysis of methanation process of coke oven gas.The stability of reactor alone and reactor with feed-effluent heat exchanger is compared through the dominant poles of the system transfer functions.With single or double disturbance of temperature and CO concentration at the reactor inlet,typical dynamic behavior in the reactor,including fast concentration response,slow temperature response and inverse response,is revealed for further understanding of the counteraction and synergy effects caused by simultaneous variation of concentration and temperature.Analysis results show that the stability of the reactor loop is more sensitive than that of reactor alone due to the positive heat feedback.Remarkably,with the decrease of heat exchange efficiency,the reactor system may display limit cycle behavior for a pair of complex conjugate poles across the imaginary axis.