The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model ...The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51307050)
文摘The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.